Bài 11 trang 98 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm. Bài tập này giúp học sinh củng cố kiến thức về đạo hàm của hàm số, ứng dụng đạo hàm để giải quyết các vấn đề thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 11 trang 98 SGK Toán 11 tập 2, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh.
Đề bài
Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh. Tính xác suất của biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông”.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).
‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).
Lời giải chi tiết
Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh có \({C}_{24}^3 = 2024\)
\( \Rightarrow n\left( \Omega \right) = 2024\)
Gọi \(A\) là biến cố: “3 đỉnh được chọn là 3 đỉnh của một tam giác cân”, \(B\) là biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông”.
Vậy \(AB\) là biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân”, \(A \cup B\) là biến cố “3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông”.
Gọi \(\left( O \right)\) là đường tròn ngoại tiếp đa giác đều.
Mỗi tam giác vuông có 3 đỉnh là 3 đỉnh của đa giác thì cạnh huyền của tam giác vuông phải là đường kính của \(\left( O \right)\), do đó ta có 12 cách chọn đường kính.
Với mỗi cách chọn đường kính, ta có 22 cách chọn đỉnh góc vuông (22 đỉnh còn lại của đa giác)
Vậy số tam giác vuông thỏa mãn điều kiện là: \(12.22 = 264\) (tam giác).
\( \Rightarrow n\left( A \right) = 264 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{264}}{{2024}} = \frac{3}{{23}}\)
Mỗi tam giác cân có 3 đỉnh là 3 đỉnh của đa giác thì đường cao của tam giác cân phải là đường kính của \(\left( O \right)\).
Với mỗi một đỉnh trên \(\left( O \right)\), ta có 10 cách tạo ra tam giác cân (không là tam giác đều).
Vậy số tam giác cân (không là tam giác đều) thỏa mãn điều kiện là: \(10.24 = 240\) (tam giác).
Số tam giác đều có 3 đỉnh nằm trên \(\left( O \right)\) là: \(24:3 = 8\) (tam giác).
\( \Rightarrow n\left( B \right) = 240 + 8 = 248 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{{248}}{{2024}} = \frac{{31}}{{253}}\)
Có 12 cách chọn đường kính.
Với mỗi cách chọn đường kính, ta có 2 cách chọn đỉnh góc vuông để tạo thành tam giác vuông cân.
Vậy số tam giác vuông cân thỏa mãn điều kiện là: \(12.2 = 24\) (tam giác).
\( \Rightarrow n\left( {AB} \right) = 24 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{24}}{{2024}} = \frac{3}{{253}}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{3}{{23}} + \frac{{31}}{{253}} - \frac{3}{{253}} = \frac{{61}}{{253}}\)
Bài 11 trang 98 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 11 yêu cầu học sinh giải các bài toán liên quan đến việc tìm đạo hàm của hàm số, xác định khoảng đơn điệu của hàm số và tìm cực trị của hàm số. Các bài toán này thường có dạng:
Để giải Bài 11 trang 98 SGK Toán 11 tập 2, học sinh cần nắm vững các kiến thức sau:
Ví dụ, xét hàm số f(x) = x3 - 3x2 + 2. Để tìm đạo hàm của hàm số này, ta áp dụng quy tắc đạo hàm của hàm số lũy thừa:
f'(x) = 3x2 - 6x
Tiếp theo, để tìm các điểm cực trị của hàm số, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
⇔ 3x(x - 2) = 0
⇔ x = 0 hoặc x = 2
Vậy, hàm số có hai điểm cực trị là x = 0 và x = 2. Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của đạo hàm cấp hai:
f''(x) = 6x - 6
f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.
f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.
Để giải nhanh các bài tập về đạo hàm, học sinh nên:
Để củng cố kiến thức về đạo hàm, học sinh có thể làm thêm các bài tập tương tự trong SGK Toán 11 tập 2 Chân trời sáng tạo hoặc các đề thi thử Toán 11.
Bài 11 trang 98 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải các bài toán về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em học sinh sẽ nắm vững kiến thức và tự tin giải các bài tập tương tự.