Chào mừng các em học sinh đến với lời giải chi tiết Bài 2 trang 32 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình đại số lớp 11, tập trung vào các kiến thức về hàm số và đồ thị hàm số.
giaitoan.edu.vn cung cấp lời giải bài tập Toán 11 chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Tìm tập xác định của các hàm số sau:
Đề bài
Tìm tập xác định của các hàm số sau:
\(\begin{array}{l}a)\;y = \frac{1}{{cosx}}\\b)\;y = tan(x + \frac{\pi }{4})\\c)\;y = \frac{1}{{2 - si{n^2}x}}\end{array}\)
Phương pháp giải - Xem chi tiết
+ Hàm phân thức xác định khi mẫu khác 0.
+ Tập xác định hàm tanx là \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
Lời giải chi tiết
a) Hàm số y xác định khi \(cosx \ne 0 \Leftrightarrow \;x \ne \frac{\pi }{2} + k\pi \).
Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).
b) Hàm số y xác định khi \(cos(x + \frac{\pi }{4}) \ne 0 \Leftrightarrow x + \frac{\pi }{4} \ne \frac{\pi }{2} + k\pi \)
\( \Rightarrow x \ne \frac{\pi }{4} + k\pi \) Vậy tập xác định của hàm số là \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi |k \in \mathbb{Z}} \right\}\).
c) Hàm số y xác định khi \(2 - si{n^2}x \ne 0\) \( \Leftrightarrow si{n^2}x \ne 2\)
Mà \(0 \le si{n^2}x \le 1\)\( \Rightarrow si{n^2}x \ne 2,\,\forall x\)
Vậy tập xác định của hàm số là \(D = \mathbb{R}\).
Bài 2 trang 32 SGK Toán 11 tập 1 - Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai để xác định các yếu tố của parabol và vẽ đồ thị hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản sau:
Để giải Bài 2 trang 32 SGK Toán 11 tập 1 - Chân trời sáng tạo, chúng ta thực hiện theo các bước sau:
Giả sử hàm số cho trong Bài 2 là y = x2 - 4x + 3. Ta thực hiện các bước giải như sau:
Bảng giá trị:
x | y |
---|---|
0 | 3 |
1 | 0 |
2 | -1 |
3 | 0 |
4 | 3 |
Dựa vào bảng giá trị và tọa độ đỉnh, ta vẽ được đồ thị hàm số y = x2 - 4x + 3 là một parabol có đỉnh I(2, -1) và trục đối xứng x = 2.
Khi vẽ đồ thị hàm số, cần chú ý đến các yếu tố sau:
Để củng cố kiến thức về hàm số bậc hai và đồ thị hàm số, các em có thể tự giải các bài tập tương tự trong SGK Toán 11 tập 1 - Chân trời sáng tạo hoặc các đề thi thử Toán 11.
Bài 2 trang 32 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về hàm số bậc hai và đồ thị hàm số. Việc nắm vững kiến thức và kỹ năng giải bài tập này sẽ là nền tảng vững chắc cho các bài học tiếp theo.