Bài 1 trang 86 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 1 trang 86 SGK Toán 11 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin làm bài tập.
Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông, (SA) vuông góc với mặt đáy.
Đề bài
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông, \(SA\) vuông góc với mặt đáy. Đường thẳng \(C{\rm{D}}\) vuông góc với mặt phẳng nào sau đây?
A. \(\left( {SAD} \right)\).
B. \(\left( {SAC} \right)\).
C. \(\left( {SAB} \right)\).
D. \(\left( {SBD} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng định lí 1: Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
Lời giải chi tiết
Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot C{\rm{D}}\).
\(ABCD\) là hình vuông \( \Rightarrow C{\rm{D}} \bot A{\rm{D}}\)
\( \Rightarrow C{\rm{D}} \bot \left( {SA{\rm{D}}} \right)\)
Chọn A.
Bài 1 trang 86 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 1 yêu cầu học sinh tính đạo hàm của các hàm số sau:
a) y = x3 - 3x2 + 2x - 5
Áp dụng công thức đạo hàm của tổng và hiệu, ta có:
y' = 3x2 - 6x + 2
b) y = (x2 + 1)(x - 2)
Áp dụng công thức đạo hàm của tích, ta có:
y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
c) y = (2x + 1) / (x - 3)
Áp dụng công thức đạo hàm của thương, ta có:
y' = [(2)(x - 3) - (2x + 1)(1)] / (x - 3)2 = (2x - 6 - 2x - 1) / (x - 3)2 = -7 / (x - 3)2
d) y = sin(2x) + cos(x)
Áp dụng công thức đạo hàm của hàm lượng giác, ta có:
y' = 2cos(2x) - sin(x)
Để giải các bài tập tương tự, học sinh cần nắm vững các công thức đạo hàm cơ bản sau:
Ngoài ra, học sinh cần luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau và rèn luyện kỹ năng giải toán.
Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Việc hiểu rõ về đạo hàm và ứng dụng của nó là rất quan trọng đối với học sinh lớp 11, vì nó là nền tảng cho các kiến thức toán học nâng cao hơn.
Bài 1 trang 86 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập cơ bản nhưng quan trọng, giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ hiểu rõ hơn về bài toán và tự tin làm bài tập.