Bài 4 trang 56 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến phép biến hóa lượng giác. Bài tập này đòi hỏi học sinh nắm vững kiến thức về công thức lượng giác cơ bản và khả năng vận dụng linh hoạt vào giải quyết bài toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 4 trang 56 SGK Toán 11 tập 1, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
Đề bài
Trong các dãy số sau đây, dãy số nào là cấp số cộng? Tìm số hạng đầu và công sai của nó.
a) \({u_n} = 3 - 4n\);
b) \({u_n} = \frac{n}{2} - 4\);
c) \({u_n} = {5^n}\); d) \({u_n} = \frac{{9 - 5n}}{3}\).
Phương pháp giải - Xem chi tiết
Bước 1: Tính \({u_{n + 1}}\).
Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).
Bước 3: Kết luận:
‒ Nếu \({u_{n + 1}} - {u_n} = d\) không đổi thì dãy số là cấp số cộng có công sai \(d\).
‒ Nếu \({u_{n + 1}} - {u_n}\) thay đổi với \(n \in {\mathbb{N}^*}\) thì dãy số không là cấp số cộng.
Lời giải chi tiết
a) Ta có: \({u_{n + 1}} = 3 - 4\left( {n + 1} \right) = 3 - 4n - 4 = - 1 - 4n\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( { - 1 - 4n} \right) - \left( {3 - 4n} \right) = - 1 - 4n - 3 + 4n = - 4\)
Vậy dãy số là cấp số cộng có công sai \(d = - 4\).
b) Ta có: \({u_{n + 1}} = \frac{{n + 1}}{2} - 4 = \frac{n}{2} + \frac{1}{2} - 4 = \frac{n}{2} - \frac{7}{2}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \left( {\frac{n}{2} - \frac{7}{2}} \right) - \left( {\frac{n}{2} - 4} \right) = \frac{n}{2} - \frac{7}{2} - \frac{n}{2} + 4 = \frac{1}{2}\)
Vậy dãy số là cấp số cộng có công sai \(d = \frac{1}{2}\).
c) Ta có: \({u_1} = {5^1} = 5;{u_2} = {5^2} = 25;{u_3} = {5^3} = 125\)
Vì \({u_2} - {u_1} = 20;{u_3} - {u_2} = 100\) nên dãy số không là cấp số cộng.
d) Ta có: \({u_{n + 1}} = \frac{{9 - 5\left( {n + 1} \right)}}{3} = \frac{{9 - 5n - 5}}{3} = \frac{{4 - 5n}}{{3}}\)
Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{{4 - 5n}}{3} - \frac{{9 - 5n}}{3} = \frac{{\left( {4 - 5n} \right) - \left( {9 - 5n} \right)}}{3} = \frac{{4 - 5n - 9 + 5n}}{3} = - \frac{5}{3}\)
Vậy dãy số là cấp số cộng có công sai \(d = - \frac{5}{3}\).
Bài 4 trang 56 SGK Toán 11 tập 1 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về phép biến hóa lượng giác. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các công thức lượng giác cơ bản và kỹ năng biến đổi đại số.
Bài 4 yêu cầu học sinh thực hiện các phép biến đổi lượng giác để rút gọn biểu thức hoặc chứng minh đẳng thức. Các dạng bài tập thường gặp bao gồm:
Để giải Bài 4 trang 56 SGK Toán 11 tập 1, học sinh có thể thực hiện theo các bước sau:
Ví dụ 1: Rút gọn biểu thức sin(a + b) - sin(a - b)
Giải:
sin(a + b) - sin(a - b) = (sin a cos b + cos a sin b) - (sin a cos b - cos a sin b)
= sin a cos b + cos a sin b - sin a cos b + cos a sin b
= 2 cos a sin b
Ngoài Bài 4 trang 56, SGK Toán 11 tập 1 Chân trời sáng tạo còn có nhiều bài tập tương tự về phép biến hóa lượng giác. Học sinh nên luyện tập thêm các bài tập này để nắm vững kiến thức và kỹ năng giải bài tập.
Học sinh có thể tham khảo thêm các tài liệu sau để học tập và ôn luyện:
Bài 4 trang 56 SGK Toán 11 tập 1 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về phép biến hóa lượng giác. Bằng cách nắm vững các công thức lượng giác cơ bản và kỹ năng biến đổi đại số, học sinh có thể giải bài tập này một cách hiệu quả và tự tin.