Logo Header
  1. Môn Toán
  2. Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 60 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến hàm số bậc hai, điều kiện xác định của hàm số, và các phép biến đổi hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tính các tổng sau:

Đề bài

Tính các tổng sau:

a) \({S_n} = 1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^n}}}\);

b) \({S_n} = 9 + 99 + 999 + ... + \underbrace {99...9}_{n\,\,chu\,\,so\,\,9}\)

Phương pháp giải - Xem chi tiếtBài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).

Lời giải chi tiết

a) Tổng \({S_n}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = \frac{1}{3}\) nên ta có:

\({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = \frac{{1\left( {1 - {{\left( {\frac{1}{3}} \right)}^n}} \right)}}{{1 - \frac{1}{3}}} = \frac{{1 - {{\left( {\frac{1}{3}} \right)}^n}}}{{\frac{2}{3}}} = \frac{3}{2}\left( {1 - \frac{1}{{{3^n}}}} \right) = \frac{3}{2} - \frac{1}{{{{2.3}^{n - 1}}}}\)

b) Ta có:

\(\begin{array}{l}{S_n} = 9 + 99 + 999 + ... + \underbrace {99...9}_{n\,\,chu\,\,so\,\,9} = \left( {10 - 1} \right) + \left( {100 - 1} \right) + \left( {1000 - 1} \right) + ... + \left( {\underbrace {100...0}_{n\,\,chu\,\,so\,\,0} - 1} \right)\\ = \left( {10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}} \right) - n\end{array}\)

Tổng \(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,so\,\,0}\) là tổng của cấp số nhân có số hạng đầu \({u_1} = 10\) và công bội \(q = 10\) nên ta có:

\(10 + 100 + 1000 + ... + \underbrace {100...0}_{n\,\,chu\,\,s\^o \,\,0} = \frac{{10\left( {1 - {{10}^n}} \right)}}{{1 - 10}} = \frac{{10 - {{10}^{n + 1}}}}{{ - 9}} = \frac{{{{10}^{n + 1}} - 10}}{9}\)

Vậy \({S_n} = \frac{{{{10}^{n + 1}} - 10}}{9} - n = \frac{{{{10}^{n + 1}} - 10 - 9n}}{9}\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 60 SGK Toán 11 tập 1 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và đồ thị. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 5 yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Xác định tập xác định của hàm số.
  • Tìm tập giá trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị của hàm số.
  • Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Lời giải chi tiết

Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa hàm số.
  • Tập xác định của hàm số.
  • Tập giá trị của hàm số.
  • Hàm số đồng biến, nghịch biến.
  • Đồ thị hàm số.
  • Giá trị lớn nhất, giá trị nhỏ nhất của hàm số.

Ví dụ: Xét hàm số y = x2 - 4x + 3.

  1. Tập xác định: Tập xác định của hàm số là R (tập hợp tất cả các số thực).
  2. Tập giá trị: Tập giá trị của hàm số là [-1, +∞).
  3. Khoảng đồng biến, nghịch biến: Hàm số đồng biến trên khoảng (2, +∞) và nghịch biến trên khoảng (-∞, 2).
  4. Đồ thị: Đồ thị của hàm số là một parabol có đỉnh tại điểm (2, -1) và mở lên trên.
  5. Giá trị lớn nhất, giá trị nhỏ nhất: Hàm số không có giá trị lớn nhất, nhưng có giá trị nhỏ nhất là -1 tại x = 2.

Hướng dẫn giải bài tập tương tự

Để giải các bài tập tương tự, học sinh có thể áp dụng các bước sau:

  1. Xác định loại hàm số (bậc nhất, bậc hai, mũ, logarit,...).
  2. Tìm tập xác định của hàm số.
  3. Tính đạo hàm của hàm số (nếu cần).
  4. Tìm các điểm cực trị của hàm số (nếu có).
  5. Xác định khoảng đồng biến, nghịch biến của hàm số.
  6. Vẽ đồ thị của hàm số.
  7. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số (nếu cần).

Lưu ý quan trọng

Khi giải bài tập về hàm số, học sinh cần chú ý các điểm sau:

  • Đọc kỹ đề bài để hiểu rõ yêu cầu.
  • Sử dụng đúng các công thức và định lý.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Luyện tập thường xuyên để nắm vững kiến thức.

Ứng dụng của kiến thức về hàm số

Kiến thức về hàm số có ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống và khoa học, như:

  • Kinh tế: Phân tích cung cầu, dự báo thị trường.
  • Vật lý: Mô tả các hiện tượng vật lý, tính toán các đại lượng.
  • Kỹ thuật: Thiết kế các hệ thống, điều khiển các quá trình.
  • Thống kê: Phân tích dữ liệu, đưa ra các kết luận.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 5 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin giải các bài tập tương tự. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 11