Bài 2 trang 60 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến hàm số và đồ thị hàm số. Bài tập này đòi hỏi học sinh phải nắm vững kiến thức về các loại hàm số, cách xác định tập xác định, tập giá trị và các tính chất của hàm số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 2 trang 60 SGK Toán 11 tập 1, giúp học sinh hiểu rõ phương pháp giải và tự tin làm bài tập.
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
Đề bài
Tìm số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết
a)
\(\left\{ \begin{array}{l}{u_5} - {u_1} = 15\\{u_4} - {u_2} = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} - {u_1} = 15\\{u_1}.{q^3} - {u_1}.q = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^4} - 1} \right) = 15\\{u_1}.\left( {{q^3} - q} \right) = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^2} - 1} \right)\left( {{q^2} + 1} \right) = 15\left( 1 \right)\\{u_1}.q\left( {{q^2} - 1} \right) = 6\left( 2 \right)\end{array} \right.\)
Do \(q = \pm 1\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:
\(\frac{q}{{{q^2} + 1}} = \frac{6}{{15}} \Leftrightarrow 15q = 6\left( {{q^2} + 1} \right) \Leftrightarrow 15q = 6{q^2} + 6 \Leftrightarrow 6{q^2} - 15q + 6 = 0 \Leftrightarrow \left[ \begin{array}{l}q = \frac{1}{2}\\q = 2\end{array} \right.\)
Với \(q = \frac{1}{2}\) thế vào (2) ta được: \({u_1}.\frac{1}{2}\left( {{{\left( {\frac{1}{2}} \right)}^2} - 1} \right) = 6 \Leftrightarrow {u_1} = - 16\).
Với \(q = 2\) thế vào (2) ta được: \({u_1}.2\left( {{2^2} - 1} \right) = 6 \Leftrightarrow {u_1} = 1\).
Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:
‒ Cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).
‒ Cấp số nhân có số hạng đầu \({u_1} = - 16\) và công bội \(q = \frac{1}{2}\).
b)
\(\left\{ \begin{array}{l}{u_1} - {u_3} + {u_5} = 65\\{u_1} + {u_7} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} - {u_1}.{q^2} + {u_1}.{q^4} = 65\\{u_1} + {u_1}.{q^6} = 325\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {1 - {q^2} + {q^4}} \right) = 65\left( 1 \right)\\{u_1}\left( {1 + {q^6}} \right) = 325\left( 2 \right)\end{array} \right.\)
Chia vế với vế của (1) cho (2) ta được:
\(\begin{array}{l}\frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{{65}}{{325}} \Leftrightarrow \frac{{1 - {q^2} + {q^4}}}{{1 + {q^6}}} = \frac{1}{5} \Leftrightarrow 1 + {q^6} = 5\left( {1 - {q^2} + {q^4}} \right)\\ \Leftrightarrow 1 + {q^6} = 5 - 5{q^2} + 5{q^4} \Leftrightarrow {q^6} - 5{q^4} + 5{q^2} - 4 = 0\end{array}\)
Đặt \({q^2} = t\left( {t \ge 0} \right)\). Khi đó phương trình có dạng:
\({t^3} - 5{t^2} + 5t - 4 = 0 \Leftrightarrow t = 4 \Leftrightarrow {q^2} = 4 \Leftrightarrow q = \pm 2\)
Với \(q = - 2\) thế vào (2) ta được: \({u_1}\left( {1 + {{\left( { - 2} \right)}^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).
Với \(q = 2\) thế vào (2) ta được: \({u_1}\left( {1 + {2^6}} \right) = 325 \Leftrightarrow {u_1} = 5\).
Vậy có hai cấp số nhân \(\left( {{u_n}} \right)\) thoả mãn:
‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = 2\).
‒ Cấp số nhân có số hạng đầu \({u_1} = 5\) và công bội \(q = - 2\).
Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về hàm số bậc hai, bao gồm:
Dưới đây là lời giải chi tiết cho Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo:
Để xác định hàm số bậc hai, ta cần tìm các hệ số a, b, c. Trong bài toán này, hàm số được cho dưới dạng biểu thức, do đó, ta chỉ cần xác định các hệ số này bằng cách so sánh với dạng tổng quát y = ax2 + bx + c.
Ví dụ, nếu hàm số được cho là y = 2x2 - 3x + 1, thì ta có a = 2, b = -3, c = 1.
Đỉnh của parabol là điểm có tọa độ (x0, y0), trong đó x0 = -b/2a và y0 = f(x0). Để tìm đỉnh của parabol, ta thực hiện các bước sau:
Ví dụ, nếu hàm số là y = x2 - 4x + 3, thì ta có a = 1, b = -4, c = 3. Do đó, x0 = -(-4)/(2*1) = 2 và y0 = (2)2 - 4(2) + 3 = -1. Vậy, đỉnh của parabol là (2, -1).
Trục đối xứng của parabol là đường thẳng có phương trình x = x0, trong đó x0 là hoành độ của đỉnh parabol. Do đó, để tìm trục đối xứng của parabol, ta chỉ cần tìm hoành độ của đỉnh parabol.
Ví dụ, nếu đỉnh của parabol là (2, -1), thì trục đối xứng của parabol là x = 2.
Hàm số bậc hai y = ax2 + bx + c đồng biến trên khoảng (-∞, -b/2a) nếu a > 0 và đồng biến trên khoảng (-b/2a, +∞) nếu a < 0. Hàm số nghịch biến trên khoảng (-∞, -b/2a) nếu a < 0 và nghịch biến trên khoảng (-b/2a, +∞) nếu a > 0.
Ví dụ, nếu hàm số là y = x2 - 4x + 3, thì a = 1 > 0. Do đó, hàm số nghịch biến trên khoảng (-∞, 2) và đồng biến trên khoảng (2, +∞).
Lưu ý:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh có thể tự tin giải Bài 2 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo và các bài tập tương tự. Chúc các em học tốt!