Bài 1 trang 85 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 1 trang 85 SGK Toán 11 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin làm bài tập.
Cho tứ diện đều (ABCD). Vẽ hình bình hành (BCED).
Đề bài
Cho tứ diện đều \(ABCD\). Vẽ hình bình hành \(BCED\).
a) Tìm góc giữa đường thẳng \(AB\) và \(\left( {BCD} \right)\).
b) Tim góc phẳng nhị diện \(\left[ {A,CD,B} \right];\left[ {A,CD,E} \right]\).
Phương pháp giải - Xem chi tiết
‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.
‒ Cách xác định góc phẳng nhị diện \(\left[ {A,d,B} \right]\): Dựng mặt phẳng \(\left( P \right)\) vuông góc với \(d\), gọi \(a,a'\) lần lượt là giao tuyến của \(\left( P \right)\) với hai nửa mặt phẳng chứa \(A,B\), khi đó \(\left[ {A,d,B} \right] = \left( {a,a'} \right)\).
Lời giải chi tiết
a) Giả sử tứ diện đều có tất cả các cạnh bằng \(a\).
Gọi \(I\) là trung điểm của \(CD\), \(O\) là tâm của \(\Delta BC{\rm{D}}\)
\( \Rightarrow AO \bot \left( {BC{\rm{D}}} \right)\)
\( \Rightarrow \left( {AB,\left( {BC{\rm{D}}} \right)} \right) = \left( {AB,OB} \right) = \widehat {ABO}\)
\(BI\) là trung tuyến của tam giác đều \(BC{\rm{D}}\)
\( \Rightarrow BI = \frac{{BC\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2} \Rightarrow BO = \frac{2}{3}BI = \frac{{a\sqrt 3 }}{3}\)
\(\cos \widehat {ABO} = \frac{{BO}}{{AB}} = \frac{{\sqrt 3 }}{3} \Rightarrow \widehat {ABO} \approx 54,{7^ \circ }\)
Vậy \(\left( {AB,\left( {BC{\rm{D}}} \right)} \right) \approx 54,{7^ \circ }\)
b) \(\Delta AC{\rm{D}}\) đều \( \Rightarrow AI \bot C{\rm{D}}\)
\(\Delta BC{\rm{D}}\) đều \( \Rightarrow BI \bot C{\rm{D}}\)
Vậy \(\widehat {AIB}\) là góc phẳng nhị diện \(\left[ {A,C{\rm{D}},B} \right]\).
\(OI = \frac{1}{3}BI = \frac{{a\sqrt 3 }}{6},AO = \sqrt {A{B^2} - B{O^2}} = \frac{{a\sqrt 6 }}{3}\)
\(\tan \widehat {AIB} = \frac{{AO}}{{OI}} = 2\sqrt 2 \Rightarrow \widehat {AIB} \approx 70,{5^ \circ }\)
\(\Delta AC{\rm{D}}\) đều \( \Rightarrow AI \bot C{\rm{D}}\)
\(\Delta EC{\rm{D}}\) đều \( \Rightarrow EI \bot C{\rm{D}}\)
Vậy \(\widehat {AIE}\) là góc phẳng nhị diện \(\left[ {A,C{\rm{D}},B} \right]\).
\(\widehat {AIE} = {180^ \circ } - \widehat {AIB} = 109,{5^ \circ }\)
Bài 1 trang 85 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 1 yêu cầu học sinh tính đạo hàm của các hàm số sau:
a) y = x3 - 3x2 + 2x - 5
Áp dụng công thức đạo hàm của tổng và hiệu, ta có:
y' = 3x2 - 6x + 2
b) y = (x2 + 1)(x - 2)
Áp dụng công thức đạo hàm của tích, ta có:
y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
c) y = (x2 + 3x + 1) / (x + 1)
Áp dụng công thức đạo hàm của thương, ta có:
y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2 = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2 = (x2 + 2x + 2) / (x + 1)2
d) y = sin(2x) + cos(x)
Áp dụng công thức đạo hàm của hàm lượng giác, ta có:
y' = 2cos(2x) - sin(x)
Để giải các bài tập tương tự, học sinh cần:
Giả sử chúng ta có hàm số y = x4 + 2x3 - x + 1. Để tính đạo hàm của hàm số này, ta áp dụng công thức đạo hàm của tổng và hiệu:
y' = 4x3 + 6x2 - 1
Khi tính đạo hàm, cần chú ý đến thứ tự thực hiện các phép toán và áp dụng đúng các công thức đạo hàm. Ngoài ra, cần kiểm tra lại kết quả để đảm bảo tính chính xác.
Đạo hàm có nhiều ứng dụng quan trọng trong toán học và các lĩnh vực khác, bao gồm:
Bài 1 trang 85 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập cơ bản nhưng quan trọng trong chương trình học. Việc nắm vững kiến thức về đạo hàm và kỹ năng giải toán sẽ giúp học sinh tự tin giải quyết các bài tập khó hơn và ứng dụng đạo hàm vào các lĩnh vực khác.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 1 trang 85 SGK Toán 11 tập 2 và đạt kết quả tốt trong học tập.