Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11. Bài viết này sẽ hướng dẫn bạn giải quyết các bài tập trong mục 2 trang 66 SGK Toán 11 tập 1 - Chân trời sáng tạo một cách nhanh chóng và hiệu quả.
Chúng tôi cam kết mang đến cho bạn những giải pháp học tập tốt nhất, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
Ở trên ta đã biết \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim \frac{{3{n^2} + 1}}{{{n^2}}} = 3\).
a) Tìm các giới hạn \(\lim 3\) và \(\lim \frac{1}{{{n^2}}}\).
b) Từ đó, nêu nhận xét về \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right)\) và \(\lim 3 + \lim \frac{1}{{{n^2}}}\).
Phương pháp giải:
Áp dụng công thức tính giới hạn cơ bản và giới hạn của hằng số:
• \(\lim \frac{1}{{{n^k}}} = 0\), với \(k\) nguyên dương bất kì.
• \(\lim {u_n} = \lim c = c\), với \(c\) là hằng số.
Lời giải chi tiết:
a) \(\lim 3 = 3\) vì 3 là hằng số.
Áp dụng giới hạn cơ bản với \(k = 2\), ta có: \(\lim \frac{1}{{{n^2}}} = 0\).
b) \(\lim \left( {3 + \frac{1}{{{n^2}}}} \right) = \lim 3 + \lim \frac{1}{{{n^2}}} = 3\)
Tìm các giới hạn sau:
a) \(\lim \frac{{2{n^2} + 3n}}{{{n^2} + 1}}\)
b) \(\lim \frac{{\sqrt {4{n^2} + 3} }}{n}\)
Phương pháp giải:
Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.
Bước 2: Tính các giới hạn của tử và mẫu rồi áp dụng quy tắc tính giới hạn của thương để tính giới hạn.
Lời giải chi tiết:
a) \(\lim \frac{{2{n^2} + 3n}}{{{n^2} + 1}} = \lim \frac{{{n^2}\left( {2 + \frac{{3n}}{{{n^2}}}} \right)}}{{{n^2}\left( {1 + \frac{1}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{3}{n}}}{{1 + \frac{1}{{{n^2}}}}} = 2\)
b) \(\lim \frac{{\sqrt {4{n^2} + 3} }}{n} = \lim \frac{{\sqrt {{n^2}\left( {4 + \frac{3}{{{n^2}}}} \right)} }}{n} = \lim \frac{{n\sqrt {4 + \frac{3}{{{n^2}}}} }}{n} = \lim \sqrt {4 + \frac{3}{{{n^2}}}} = 2\)
Mục 2 trang 66 SGK Toán 11 tập 1 - Chân trời sáng tạo tập trung vào việc ứng dụng kiến thức về hàm số bậc hai để giải quyết các bài toán thực tế. Các bài tập trong mục này thường yêu cầu học sinh xác định các yếu tố của hàm số, vẽ đồ thị hàm số và tìm các điểm đặc biệt của đồ thị. Việc nắm vững kiến thức về hàm số bậc hai là rất quan trọng để giải quyết tốt các bài tập trong mục này.
Mục 2 trang 66 bao gồm một số bài tập với các mức độ khó khác nhau. Dưới đây là phân tích chi tiết từng bài tập:
Bài tập này yêu cầu học sinh xác định các yếu tố quan trọng của hàm số bậc hai, bao gồm hệ số a, b, c, đỉnh của parabol, trục đối xứng và giao điểm với các trục tọa độ. Để giải bài tập này, học sinh cần nắm vững công thức tính các yếu tố của hàm số bậc hai.
Bài tập này yêu cầu học sinh vẽ đồ thị của hàm số bậc hai. Để vẽ đồ thị, học sinh cần xác định các yếu tố của hàm số, vẽ trục tọa độ và đánh dấu các điểm đặc biệt của đồ thị. Sau đó, học sinh có thể vẽ đường cong parabol đi qua các điểm đã đánh dấu.
Bài tập này yêu cầu học sinh tìm các điểm đặc biệt của đồ thị hàm số, chẳng hạn như đỉnh của parabol, giao điểm với các trục tọa độ và các điểm đối xứng. Để giải bài tập này, học sinh cần sử dụng các công thức và phương pháp đã học để tìm ra các điểm cần tìm.
Để giải quyết các bài tập trong mục 2 trang 66 SGK Toán 11 tập 1 - Chân trời sáng tạo một cách hiệu quả, học sinh có thể áp dụng các phương pháp sau:
Bài tập: Tìm tọa độ đỉnh của parabol y = x2 - 4x + 3.
Lời giải:
Khi giải các bài tập trong mục 2 trang 66, học sinh cần lưu ý những điều sau:
Giải mục 2 trang 66 SGK Toán 11 tập 1 - Chân trời sáng tạo đòi hỏi học sinh phải nắm vững kiến thức về hàm số bậc hai và áp dụng các phương pháp giải bài tập một cách linh hoạt. Hy vọng rằng với những hướng dẫn chi tiết và ví dụ minh họa trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài tập Toán 11.