Logo Header
  1. Môn Toán
  2. Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo

Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo

Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chào mừng bạn đến với giaitoan.edu.vn, nơi cung cấp lời giải chi tiết và dễ hiểu cho các bài tập Toán 11 tập 1 - Chân trời sáng tạo. Chúng tôi hiểu rằng việc tự học đôi khi gặp khó khăn, đặc biệt là với những bài tập phức tạp.

Mục tiêu của chúng tôi là giúp bạn nắm vững kiến thức, tự tin giải quyết các bài toán và đạt kết quả cao trong học tập.

a) Cho điểm (A) ở ngoài mặt phẳng (left( Q right)). Trong (left( Q right)) vẽ hai đường thẳng cắt nhau (a') và (b'). Làm thế nào để vẽ hai đường thẳng (a) và (b) đi qua (A) và song song với (left( Q right))?

Hoạt động 3

    a) Cho điểm \(A\) ở ngoài mặt phẳng \(\left( Q \right)\). Trong \(\left( Q \right)\) vẽ hai đường thẳng cắt nhau \(a'\) và \(b'\). Làm thế nào để vẽ hai đường thẳng \(a\) và \(b\) đi qua \(A\) và song song với \(\left( Q \right)\)?

    b) Có nhận xét gì về mối liên hệ giữa \(mp\left( {a,b} \right)\)và \(\left( Q \right)\)?

    Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

    Phương pháp giải:

    Sử dụng các định lí:

    ‒ Trong không gian, qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.

    ‒ Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).

    Lời giải chi tiết:

    a) Qua điểm \(A\), ta vẽ được duy nhất một đường thẳng \(a\) song song với đường thẳng \(a'\).

    Qua điểm \(A\), ta vẽ được duy nhất một đường thẳng \(b\) song song với đường thẳng \(b'\).

    Ta có:

    \(\begin{array}{l}\left. \begin{array}{l}a\parallel a'\\a' \subset \left( Q \right)\end{array} \right\} \Rightarrow a\parallel \left( Q \right)\\\left. \begin{array}{l}b\parallel b'\\b' \subset \left( Q \right)\end{array} \right\} \Rightarrow b\parallel \left( Q \right)\end{array}\)

    b) Ta có:

    \(\left. \begin{array}{l}a\parallel \left( Q \right)\\b\parallel \left( Q \right)\\a,b \subset mp\left( {a,b} \right)\end{array} \right\} \Rightarrow mp\left( {a,b} \right)\parallel \left( Q \right)\)

    Hoạt động 4

      Cho ba mặt phẳng \(\left( P \right),\left( Q \right),\left( R \right)\) thoả mãn \(\left( P \right)\parallel \left( Q \right)\), \(\left( R \right) \cap \left( P \right) = a\) và \(\left( R \right) \cap \left( Q \right) = b\). Xét vị trí tương đối của \(a\) và \(b\).

      Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

      Phương pháp giải:

      Sử dụng định nghĩa: Hai đường thẳng gọi là song song nếu chúng nằm trong cùng một mặt phẳng và không có điểm chung.

      Lời giải chi tiết:

      Ta có:

      \(\left. \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\\left( P \right)\parallel \left( Q \right)\end{array} \right\} \Rightarrow a \cap b = \emptyset \)

      Vì hai đường thẳng \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( R \right)\) và không có điểm chung nên \(a\parallel b\).

      Thực hành 2

        Cho hình chóp \(S.ABCD\) với đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm của hai đường chéo, tam giác \(SBD\) là tam giác đều. Một mặt phẳng \(\left( \alpha \right)\) di động song song với mặt phẳng \(\left( {SBD} \right)\) và cắt đoạn thẳng \(AC\). Chứng minh các giao tuyến của \(\left( \alpha \right)\) với hình chóp tạo thành một tam giác đều.

        Phương pháp giải:

        ‒ Sử dụng định lí 3: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.

        ‒ Sử dụng định lí Thales trong tam giác.

        Lời giải chi tiết:

        Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

        TH1: \(\left( \alpha \right)\) cắt đoạn \(AO\) tại \(I\).

        Gọi \(E,F,G\) lần lượt là giao điểm của \(\left( \alpha \right)\) với \(SA,AB,AD\).

        Ta có:

        \(\begin{array}{l}\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SBD} \right)\\\left( \alpha \right) \cap \left( {ABCD} \right) = FG\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow FG\parallel B{\rm{D}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{AG}}{{AD}} = \frac{{FG}}{{B{\rm{D}}}}\left( 1 \right)\\\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SBD} \right)\\\left( \alpha \right) \cap \left( {SAB} \right) = EF\\\left( {SAB} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow EF\parallel SB \Rightarrow \frac{{AF}}{{AB}} = \frac{{AE}}{{AS}} = \frac{{EF}}{{SB}}\left( 2 \right)\\\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SBD} \right)\\\left( \alpha \right) \cap \left( {SAD} \right) = EG\\\left( {SAD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow EG\parallel SD \Rightarrow \frac{{AG}}{{AD}} = \frac{{AE}}{{AS}} = \frac{{EG}}{{SD}}\left( 3 \right)\end{array}\)

        Từ (1), (2) và (3) suy ra \(\frac{{EF}}{{SB}} = \frac{{EG}}{{S{\rm{D}}}} = \frac{{FG}}{{B{\rm{D}}}}\).

        Tam giác \(SBD\) đều nên \(SB = SD = BD\).

        Do đó \(EF = EG = FG\). Vậy tam giác \(EFG\) đều.

        TH2: \(\left( \alpha \right)\) cắt đoạn \(CO\) tại \(J\).

        Gọi \(M,N,P\) lần lượt là giao điểm của \(\left( \alpha \right)\) với \(SC,BC,C{\rm{D}}\).

        Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

        Ta có:

        \(\begin{array}{l}\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SBD} \right)\\\left( \alpha \right) \cap \left( {ABCD} \right) = NP\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow NP\parallel B{\rm{D}} \Rightarrow \frac{{CN}}{{CB}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\left( 4 \right)\\\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SBD} \right)\\\left( \alpha \right) \cap \left( {SBC} \right) = MN\\\left( {SBC} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow MN\parallel SB \Rightarrow \frac{{CM}}{{C{\rm{S}}}} = \frac{{CN}}{{CB}} = \frac{{MN}}{{SB}}\left( 5 \right)\\\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SBD} \right)\\\left( \alpha \right) \cap \left( {SCD} \right) = MP\\\left( {SCD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow MP\parallel SD \Rightarrow \frac{{C{\rm{M}}}}{{C{\rm{S}}}} = \frac{{CP}}{{C{\rm{D}}}} = \frac{{MP}}{{SD}}\left( 6 \right)\end{array}\)

        Từ (4), (5) và (6) suy ra \(\frac{{MN}}{{SB}} = \frac{{MP}}{{S{\rm{D}}}} = \frac{{NP}}{{B{\rm{D}}}}\).

        Tam giác \(SBD\) đều nên \(SB = SD = BD\).

        Do đó \(MN = MP = NP\). Vậy tam giác \(MNP\) đều.

        Vận dụng 2

          Khi dùng dao cắt các lớp bánh (Hình 11), giả sử bề mặt của các lớp bánh là các mặt phẳng song song và con dao được xem như mặt phẳng \(\left( P \right)\), nêu kết luận về các giao tuyến tạo bởi \(\left( P \right)\) với các bể mặt của các lớp bánh. Giải thích.

          Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

          Phương pháp giải:

          Sử dụng định lí 3: Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.

          Lời giải chi tiết:

          Bởi vì các lớp bánh là các mặt phẳng song song với nhau nên theo định lí 3, giao tuyến tạo bởi \(\left( P \right)\) và các lớp bánh song song với nhau.

          Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng toán học. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

          Giải mục 3 trang 109, 110, 111, 112, 113, 114, 115, 116 SGK Toán 11 tập 1 - Chân trời sáng tạo

          Mục 3 của SGK Toán 11 tập 1 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết các bài tập trong mục này một cách hiệu quả, học sinh cần nắm vững lý thuyết, công thức và phương pháp giải liên quan. Dưới đây là hướng dẫn chi tiết và lời giải cho từng bài tập từ trang 109 đến trang 116.

          Trang 109: Bài tập về... (Ví dụ: Hàm số bậc hai)

          Bài 1: (Đề bài)...

          Lời giải:

          1. Bước 1: Xác định các hệ số a, b, c của hàm số bậc hai.
          2. Bước 2: Tính delta (Δ) = b2 - 4ac.
          3. Bước 3: Xác định số nghiệm của phương trình dựa trên giá trị của delta.
          4. Bước 4: Tính nghiệm của phương trình (nếu có).

          Bài 2: (Đề bài)...

          Lời giải:

          ...

          Trang 110: Bài tập về... (Ví dụ: Đồ thị hàm số bậc hai)

          Bài 3: (Đề bài)...

          Lời giải:

          • Xác định đỉnh của parabol.
          • Xác định trục đối xứng của parabol.
          • Vẽ parabol dựa trên các điểm đã xác định.

          ...

          Trang 111 - 116: Tiếp tục giải các bài tập tương tự

          Các bài tập từ trang 111 đến 116 tiếp tục củng cố kiến thức về hàm số bậc hai, bao gồm các bài tập về tìm tập xác định, tập giá trị, khoảng đồng biến, nghịch biến, và các ứng dụng thực tế của hàm số bậc hai.

          Lưu ý quan trọng khi giải bài tập
          • Đọc kỹ đề bài và xác định yêu cầu của bài toán.
          • Sử dụng đúng công thức và phương pháp giải.
          • Kiểm tra lại kết quả để đảm bảo tính chính xác.
          • Tham khảo các tài liệu học tập và nguồn tham khảo khác để hiểu rõ hơn về kiến thức.
          Ví dụ về ứng dụng của hàm số bậc hai trong thực tế

          Hàm số bậc hai được ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống, như:

          • Tính quỹ đạo của vật ném.
          • Thiết kế các công trình kiến trúc.
          • Dự báo doanh thu và lợi nhuận.

          Hy vọng rằng với hướng dẫn chi tiết và lời giải đầy đủ này, bạn sẽ tự tin giải quyết các bài tập trong mục 3 SGK Toán 11 tập 1 - Chân trời sáng tạo. Chúc bạn học tập tốt!

          Bài tậpTrangMức độ khó
          Bài 1109Dễ
          Bài 2109Trung bình
          Bài 3110Khó

          Tài liệu, đề thi và đáp án Toán 11