Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 26, 27 SGK Toán 11 tập 1 chương trình Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập một cách khoa học.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, tự tin giải quyết các bài toán Toán 11 và đạt kết quả cao trong học tập.
Xét hai hàm số (y = {x^2},y = 2x) và đồ thị của chúng trong Hình 2.
Xét hai hàm số \(y = {x^2},y = 2x\) và đồ thị của chúng trong Hình 2. Đối với mỗi trường hợp, nêu mối liên hệ của giá trị hàm số tại 1 và -1, 2 và -2. Nhận xét về tính đối xứng của mỗi đồ thị hàm số.
Phương pháp giải:
Quan sát đồ thị để trả lời.
Lời giải chi tiết:
* Hàm số \(y = {x^2}\)
Nhìn đồ thị ta thấy:
+ \(y(1) = y( - 1) = 1,y(2) = y( - 2) = 4\)
+ Đồ thị hàm số đối xứng qua trục Oy.
* Hàm số \(y = 2x\)
Nhìn đồ thị ta thấy:
+ \(y(1) = - y( - 1),y(2) = - y( - 2)\)
+ Đồ thị hàm số đối xứng qua điểm O.
Chứng minh rằng hàm số y = sinx và hàm số y = cotx là các hàm số lẻ.
Phương pháp giải:
Cho hàm số y = f(x) có tập xác định là D. Hàm số f(x) được gọi là hàm số lẻ nếu \(\forall x \in D\)thì \( - x \in D\)và \(f( - x) = - f(x)\).
Lời giải chi tiết:
* Hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}}\)
Tập xác định \({\rm{D}} = \mathbb{R}\).
Với mọi \(x \in \mathbb{R}\)thì \( - x \in \mathbb{R}\) và \({\mathop{\rm s}\nolimits} {\rm{in}}\left( { - x} \right) = - {\mathop{\rm s}\nolimits} {\rm{in}}x\).
Vậy nên \(y = {\mathop{\rm s}\nolimits} {\rm{inx}}\) là hàm số lẻ.
* Hàm số \(y = \cot x\)
Tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\).
Với mọi \(x \in \mathbb{R}\)thì \( - x \in \mathbb{R}\) và \(\cot \left( { - x} \right) = - \cot x\).
Vậy nên \(y = \cot {\rm{x}}\) là hàm số lẻ.
Hãy chỉ ra một số thực T sao cho sin(x + T) = sinx với mọi \(x \in \mathbb{R}\).
Phương pháp giải:
Dựa vào tính chất
\(\begin{array}{l}\sin \left( {\alpha + k2\pi } \right) = \sin \alpha \\\cos \left( {\alpha + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha + k\pi } \right) = \cot \alpha \end{array}\)
Lời giải chi tiết:
Do \(\sin \left( {x + k2\pi } \right) = \sin x\),\(k \in \mathbb{Z}\).
\( \Rightarrow \sin \left( {x + 2\pi } \right) = \sin x\)
Nên \(T = 2\pi \).
Xét tính tuần hoàn của hàm số y = cosx và hàm số y = cotx
Phương pháp giải:
Hàm số y = f(x) có tập xác định D được gọi là hàm số tuần hoàn nếu tồn tại số T \( \ne \)0 sao cho với mọi \(x \in D\)ta có \(x \pm T \in D\) và\(f(x + T) = f(x)\)
Số T dương nhỏ nhất thỏa mãn cách điều kiện trên (nêu có) được gọi là chu kì của hàm số tuần hoàn đó.
Lời giải chi tiết:
* Hàm số y = cosx
+ Tập xác định \({\rm{D}} = \mathbb{R}\).
+ Với mọi \(x \in \mathbb{R}\)ta có \(x \pm 2\pi \in D\) và\(\cos (x + 2\pi ) = \cos (x)\)
Vậy hàm số y = cosx là hàm tuần hoàn vỡi chu kì \(T = 2\pi \).
* Hàm số y = cotx
+ Tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}\).
+ Với mọi \(x \in \mathbb{R}\)ta có \(x \pm \pi \in D\) và\(\cot (x + \pi ) = \cot (x)\)
Vậy hàm số y = cosx là hàm tuần hoàn vỡi chu kì \(T = \pi \).
Mục 2 của chương trình Toán 11 tập 1 Chân trời sáng tạo tập trung vào các kiến thức cơ bản về phép biến hình. Cụ thể, các em sẽ được làm quen với các khái niệm như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các phép biến hình này là nền tảng quan trọng để học tập các kiến thức tiếp theo trong chương trình.
Bài tập mục 2 trang 26, 27 SGK Toán 11 tập 1 Chân trời sáng tạo bao gồm các dạng bài tập khác nhau, yêu cầu học sinh vận dụng kiến thức về các phép biến hình để giải quyết các vấn đề thực tế. Dưới đây là phân tích chi tiết từng bài tập:
Bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép tịnh tiến. Để giải bài tập này, học sinh cần nắm vững công thức của phép tịnh tiến: x' = x + a, y' = y + b, trong đó (a, b) là vectơ tịnh tiến.
Bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép quay. Để giải bài tập này, học sinh cần nắm vững công thức của phép quay: x' = x cos φ - y sin φ, y' = x sin φ + y cos φ, trong đó φ là góc quay.
Bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng trục. Để giải bài tập này, học sinh cần nắm vững tính chất của phép đối xứng trục: một điểm nằm trên trục đối xứng thì ảnh của nó là chính nó, một điểm không nằm trên trục đối xứng thì ảnh của nó đối xứng qua trục đối xứng.
Bài tập này yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng tâm. Để giải bài tập này, học sinh cần nắm vững tính chất của phép đối xứng tâm: một điểm nằm trên tâm đối xứng thì ảnh của nó là chính nó, một điểm không nằm trên tâm đối xứng thì ảnh của nó đối xứng qua tâm đối xứng.
Để giải bài tập mục 2 trang 26, 27 SGK Toán 11 tập 1 Chân trời sáng tạo một cách hiệu quả, học sinh cần:
Ví dụ: Cho điểm A(1; 2) và vectơ tịnh tiến v = (3; -1). Tìm ảnh A' của điểm A qua phép tịnh tiến theo vectơ v.
Giải:
Áp dụng công thức phép tịnh tiến, ta có:
x' = 1 + 3 = 4
y' = 2 - 1 = 1
Vậy, A'(4; 1).
Để củng cố kiến thức và rèn luyện kỹ năng giải bài tập, học sinh có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 11 tập 1 Chân trời sáng tạo hoặc trên các trang web học toán online uy tín.
Hy vọng với lời giải chi tiết và phương pháp giải bài tập hiệu quả mà giaitoan.edu.vn cung cấp, các em học sinh sẽ tự tin hơn trong việc học tập môn Toán 11 và đạt kết quả tốt nhất. Chúc các em học tập tốt!