Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 1 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 136 và 137 sách giáo khoa Toán 11 tập 1, chương trình Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và tự tin hơn trong quá trình học tập.
Sử dụng biểu đồ ở Hoạt động mở đầu, hoàn thiện bảng thống kê sau:
a) Sử dụng biểu đồ ở Hoạt động mở đầu, hoàn thiện bảng thống kê sau:
b) Tìm các nhóm chứa giá trị trung vị chiều cao thành viên mỗi đội.
Phương pháp giải:
Quan sát biểu đồ và điền vào bảng.
Lời giải chi tiết:
a)
b) Nhóm chứa giá trị trung vị chiều cao thành viên đội Sao La là \(\begin{array}{*{20}{l}}{\;\left[ {180;185} \right)}\end{array}\).
Nhóm chứa giá trị trung vị chiều cao thành viên đội Kim Ngưu là \(\begin{array}{*{20}{l}}{\;\left[ {185;190} \right)}\end{array}\).
Hãy trả lời câu hỏi ở Hoạt động mở đầu.
Phương pháp giải:
Tính số trung bình và số trung vị theo bảng tần số ghép nhóm rồi so sánh.
Lời giải chi tiết:
Ta có số liệu thống kê chiều cao thành viên của hai đội như sau:
• Chiều cao trung bình của thành viên đội Sao La là:
\(\bar x = \frac{{2.172,5 + 4.177,5 + 5.182,5 + 5.187,5 + 4.192,5}}{{20}} = 183,75\left( {cm} \right)\)
Nhóm chứa số trung vị của đội Sao La là: \(\begin{array}{*{20}{l}}{\;\left[ {180;185} \right)}\end{array}\)
Ta có: \(n = 20;{n_m} = 5;C = 2 + 4 = 6;{u_m} = 180;{u_{m + 1}} = 185\)
Trung vị của chiều cao của thành viên đội Sao La là:
\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 180 + \frac{{\frac{{20}}{2} - 6}}{5}.\left( {185 - 180} \right) = 184\left( m \right)\)
• Chiều cao trung bình của thành viên đội Kim Ngưu là:
\(\bar x = \frac{{2.172,5 + 3.177,5 + 4.182,5 + 10.187,5 + 1.192,5}}{{20}} = 183,75\left( {cm} \right)\)
Nhóm chứa số trung vị của đội Kim Ngưu là: \(\begin{array}{*{20}{l}}{\;\left[ {185;190} \right)}\end{array}\)
Ta có: \(n = 20;{n_m} = 10;C = 2 + 3 + 4 = 9;{u_m} = 185;{u_{m + 1}} = 190\)
Trung vị của chiều cao của thành viên đội Kim Ngưu là:
\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 185 + \frac{{\frac{{20}}{2} - 9}}{{10}}.\left( {190 - 185} \right) = 185,5\left( m \right)\)
Vậy chiều cao trung bình của hai đội bằng nhau, số trung vị của đội Sao La nhỏ hơn số trung vị của đội Kim Ngưu.
Trong một hội thao, thời gian chạy 200 m của một nhóm các vận động viên được ghi lại ở bảng sau:
Dựa vào bảng số liệu trên, ban tổ chức muốn chọn ra khoảng 50% số vận động viên chạy nhanh nhất để tiếp tục thi vòng 2. Ban tổ chức nên chọn các vận động viên có thời gian chạy không quá bao nhiêu giây?
Phương pháp giải:
Tính số trung vị theo bảng tần số ghép nhóm.
Lời giải chi tiết:
Số vận động viên tham gia là: \(n = 5 + 12 + 32 + 45 + 30 = 124\).
Gọi \({x_1};{x_2};...;{x_{124}}\) lần lượt là thời gian chạy của 124 vận động viên được xếp theo thứ tự không giảm.
Do \({x_1};...;{x_5} \in \begin{array}{*{20}{l}}{\left[ {21;21,5} \right)}\end{array};{x_6};...;{x_{17}} \in \begin{array}{*{20}{l}}{\left[ {21,5;22} \right)}\end{array};{x_{18}};...;{x_{49}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{l}}{\left[ {22;22,5} \right)}\end{array}}\end{array};\)\({x_{50}};...;{x_{94}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{l}}{\begin{array}{*{20}{l}}{\left[ {22,5;23} \right)}\end{array}}\end{array}}\end{array}\) nên trung vị của mẫu số liệu là: \(\frac{1}{2}\left( {{x_{62}} + {x_{63}}} \right) \in \begin{array}{*{20}{l}}{\left[ {22,5;23} \right)}\end{array}\)
Ta có: \(n = 124;{n_m} = 45;C = 5 + 12 + 32 = 49;{u_m} = 22,5;{u_{m + 1}} = 23\)
Trung vị của thời gian chạy của các vận động viên là:
\({M_e} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 22,5 + \frac{{\frac{{124}}{2} - 49}}{{45}}.\left( {23 - 22,5} \right) \approx 22,64\)
Vậy ban tổ chức nên chọn các vận động viên có thời gian chạy không quá 22,64 giây
Mục 1 trang 136, 137 SGK Toán 11 tập 1 Chân trời sáng tạo thường tập trung vào các kiến thức về phép biến hình, bao gồm phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các phép biến hình này là nền tảng quan trọng để học tập các kiến thức hình học nâng cao hơn trong chương trình Toán 11.
Bài tập về phép tịnh tiến thường yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép tịnh tiến cho trước. Để giải các bài tập này, học sinh cần hiểu rõ định nghĩa của phép tịnh tiến và công thức tính tọa độ ảnh của một điểm qua phép tịnh tiến.
Phép quay là một phép biến hình quan trọng trong hình học. Bài tập về phép quay thường yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép quay cho trước. Để giải các bài tập này, học sinh cần hiểu rõ định nghĩa của phép quay và công thức tính tọa độ ảnh của một điểm qua phép quay.
Phép đối xứng trục là phép biến hình biến mỗi điểm thành điểm đối xứng của nó qua một trục cho trước. Bài tập về phép đối xứng trục thường yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng trục cho trước.
Phép đối xứng tâm là phép biến hình biến mỗi điểm thành điểm đối xứng của nó qua một tâm cho trước. Bài tập về phép đối xứng tâm thường yêu cầu học sinh xác định ảnh của một điểm, một đường thẳng hoặc một hình qua phép đối xứng tâm cho trước.
Các phép biến hình có ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống và khoa học, như:
Hy vọng với lời giải chi tiết và những lời khuyên trên, các em sẽ tự tin hơn khi giải các bài tập trong mục 1 trang 136, 137 SGK Toán 11 tập 1 Chân trời sáng tạo. Chúc các em học tập tốt!