Logo Header
  1. Môn Toán
  2. Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức đã học để giải quyết các bài toán thực tế.

giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp lời giải chính xác, dễ hiểu và nhanh chóng.

Cho tứ diện \(ABCD\). Gọi \(E,F,G\) lần lượt là ba điểm trên ba cạnh \(AB,AC,BD\) sao cho \(EF\) cắt \(BC\) tại \(I\left( {I \ne C} \right)\), \(EG\) cắt \(A{\rm{D}}\) tại \(H\left( {H \ne D} \right)\).

Đề bài

Cho tứ diện \(ABCD\). Gọi \(E,F,G\) lần lượt là ba điểm trên ba cạnh \(AB,AC,BD\) sao cho \(EF\) cắt \(BC\) tại \(I\left( {I \ne C} \right)\), \(EG\) cắt \(A{\rm{D}}\) tại \(H\left( {H \ne D} \right)\).

a) Tìm giao tuyến của các mặt phẳng \(\left( {EFG} \right)\) và \(\left( {BCD} \right)\); \(\left( {EFG} \right)\) và \(\left( {ACD} \right)\).

b) Chứng minh ba đường thẳng \(CD,IG,HF\) cùng đi qua một điểm.

Phương pháp giải - Xem chi tiếtBài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

‒ Để tìm giao tuyến của hai mặt phẳng, ta tìm hai điểm chung phân biệt của hai mặt phẳng đó.

‒ Để chứng minh ba đường thẳng \(CD,IG,HF\) cùng đi qua một điểm, ta chứng minh \(H,F\) và giao điểm của \(CD,IG\) thẳng hàng bằng cách chứng minh ba điểm cùng nằm trên giao tuyến của hai mặt phẳng.

Lời giải chi tiết

Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}G \in \left( {EFG} \right)\\G \in BD \subset \left( {BCD} \right)\end{array} \right\} \Rightarrow G \in \left( {EFG} \right) \cap \left( {BCD} \right)\\\left. \begin{array}{l}I \in EF \subset \left( {EFG} \right)\\I \in BC \subset \left( {BCD} \right)\end{array} \right\} \Rightarrow I \in \left( {EFG} \right) \cap \left( {BCD} \right)\end{array}\)

Vậy giao tuyến của hai mặt phẳng \(\left( {EFG} \right)\) và \(\left( {BCD} \right)\) là đường thẳng \(GI\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}F \in \left( {EFG} \right)\\F \in AC \subset \left( {ACD} \right)\end{array} \right\} \Rightarrow F \in \left( {EFG} \right) \cap \left( {ACD} \right)\\\left. \begin{array}{l}H \in EG \subset \left( {EFG} \right)\\H \in A{\rm{D}} \subset \left( {ACD} \right)\end{array} \right\} \Rightarrow H \in \left( {EFG} \right) \cap \left( {ACD} \right)\end{array}\)

Vậy giao tuyến của hai mặt phẳng \(\left( {EFG} \right)\) và \(\left( {ACD} \right)\) là đường thẳng \(HF\).

b) Gọi \(J\) là giao điểm của \(CD\) và \(IG\).

Ta có:

\(\left. \begin{array}{l}J \in IG \subset \left( {EFG} \right)\\J \in C{\rm{D}} \subset \left( {ACD} \right)\end{array} \right\} \Rightarrow J \in \left( {EFG} \right) \cap \left( {ACD} \right)\)

Mà \(F \in \left( {EFG} \right) \cap \left( {ACD} \right),H \in \left( {EFG} \right) \cap \left( {ACD} \right)\) (theo chứng minh phần a).

Do đó ba điểm \(H,F,J\) thẳng hàng.

Vậy ba đường thẳng \(CD,IG,HF\) cùng đi điểm \(J\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng toán học. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết

Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian để giải quyết các bài toán liên quan đến quan hệ song song, vuông góc. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các định nghĩa, tính chất và định lý liên quan.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cùng nhau ôn lại một số kiến thức lý thuyết quan trọng:

  • Đường thẳng song song với mặt phẳng: Một đường thẳng được gọi là song song với một mặt phẳng nếu nó không có điểm chung với mặt phẳng đó.
  • Đường thẳng vuông góc với mặt phẳng: Một đường thẳng được gọi là vuông góc với một mặt phẳng nếu nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
  • Góc giữa đường thẳng và mặt phẳng: Góc giữa đường thẳng và mặt phẳng là góc tạo bởi đường thẳng đó và hình chiếu của nó trên mặt phẳng.
  • Điều kiện để đường thẳng vuông góc với mặt phẳng: Một đường thẳng vuông góc với một mặt phẳng nếu nó vuông góc với hai đường thẳng bất kỳ nằm trong mặt phẳng đó.

Phần 2: Giải chi tiết Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo

Để giải Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo, chúng ta cần phân tích đề bài một cách cẩn thận, xác định các yếu tố đã cho và yêu cầu của bài toán. Sau đó, áp dụng các kiến thức lý thuyết đã học để tìm ra lời giải chính xác.

(Giả sử đề bài Bài 4 là: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy. Biết SA = a. Tính góc giữa đường thẳng SC và mặt phẳng (ABCD).)

Lời giải:

  1. Xác định hình chiếu của SC lên mặt phẳng (ABCD): Vì SA vuông góc với mặt phẳng (ABCD) nên AC là hình chiếu của SC lên mặt phẳng (ABCD).
  2. Tính độ dài AC: Vì ABCD là hình vuông cạnh a nên AC = a√2.
  3. Tính độ dài SC: Áp dụng định lý Pitago trong tam giác vuông SAC, ta có SC = √(SA² + AC²) = √(a² + (a√2)²) = a√3.
  4. Tính góc giữa SC và mặt phẳng (ABCD): Góc giữa SC và mặt phẳng (ABCD) chính là góc giữa SC và hình chiếu của nó trên mặt phẳng (ABCD), tức là góc SCA. Ta có tan(SCA) = SA/AC = a/(a√2) = 1/√2. Suy ra góc SCA = arctan(1/√2) ≈ 35.26°.

Vậy, góc giữa đường thẳng SC và mặt phẳng (ABCD) là khoảng 35.26°.

Phần 3: Luyện tập và mở rộng

Để củng cố kiến thức và kỹ năng giải bài tập về đường thẳng và mặt phẳng trong không gian, các em có thể tự giải thêm các bài tập tương tự trong SGK và sách bài tập. Ngoài ra, các em cũng nên tham khảo các tài liệu tham khảo khác để mở rộng kiến thức và hiểu sâu hơn về chủ đề này.

Phần 4: Lưu ý khi giải bài tập

Khi giải các bài tập về đường thẳng và mặt phẳng trong không gian, các em cần lưu ý một số điều sau:

  • Đọc kỹ đề bài và xác định rõ các yếu tố đã cho và yêu cầu của bài toán.
  • Vẽ hình minh họa để hình dung rõ hơn về bài toán.
  • Áp dụng các kiến thức lý thuyết đã học một cách linh hoạt và sáng tạo.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải Bài 4 trang 99 SGK Toán 11 tập 1 - Chân trời sáng tạo và các bài tập tương tự. Chúc các em học tập tốt!

Tài liệu, đề thi và đáp án Toán 11