Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 2 của giaitoan.edu.vn. Ở bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 2 trang 60, 61, 62 sách giáo khoa Toán 11 tập 2 - Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
Nêu nhận xét về vị trí tương đối của:
Nêu nhận xét về vị trí tương đối của:
a) Hai thân cây cùng mọc vuông góc với mặt đất.
b) Mặt bàn và mặt đất cùng vuông góc với chân bàn.
c) Thanh xà ngang nằm trên trần nhà và mặt sàn nhà cùng vuông góc với cột nhà.
Phương pháp giải:
Quan sát hình ảnh và trả lời câu hỏi.
Lời giải chi tiết:
a) Hai thân cây cùng mọc vuông góc với mặt đất song song với nhau.
b) Mặt bàn và mặt đất song song với nhau.
c) Thanh xà ngang nằm trên trần nhà và mặt sàn nhà song song với nhau.
Cho tứ diện \(OABC\) có \(OA\) vuông góc với mặt phẳng \(\left( {OBC} \right)\) và có \(A',B',C'\) lần lượt là trung điểm của \(OA,AB,AC\). Vẽ \(OH\) là đường cao của tam giác \(OBC\). Chứng minh rằng:
a) \(OA \bot \left( {A'B'C'} \right)\);
b) \(B'C' \bot \left( {OAH} \right)\).
Phương pháp giải:
Sử dụng các định lí:
‒ Cho hai mặt phẳng song song. Đường thẳng nào vuông góc với mặt phẳng này thì cũng vuông góc với mặt phẳng kia.
‒ Cho hai đường thẳng song song. Mặt phẳng nào vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
Lời giải chi tiết:
a) Ta có: \(A'\) là trung điểm của \(OA\)
\(B'\) là trung điểm của \(AB\)
\( \Rightarrow A'B'\) là đường trung bình của \(\Delta OAB\)
\(\left. \begin{array}{l} \Rightarrow A'B'\parallel OB\\OB \subset \left( {OBC} \right)\end{array} \right\} \Rightarrow A'B'\parallel \left( {OBC} \right)\)
\(B'\) là trung điểm của \(AB\)
\(C'\) là trung điểm của \(AC\)
\( \Rightarrow B'C'\) là đường trung bình của \(\Delta ABC\)
\(\left. \begin{array}{l} \Rightarrow B'C'\parallel BC\\BC \subset \left( {OBC} \right)\end{array} \right\} \Rightarrow B'C'\parallel \left( {OBC} \right)\)
\(\left. \begin{array}{l}A'B'\parallel \left( {OBC} \right)\\B'C'\parallel \left( {OBC} \right)\\A'B',B'C' \subset \left( {A'B'C'} \right)\end{array} \right\} \Rightarrow \left( {A'B'C'} \right)\parallel \left( {OBC} \right)\)
Lại có \(OA \bot \left( {OBC} \right)\)
Vậy \(OA \bot \left( {A'B'C'} \right)\).
b) Ta có:
\(\left. \begin{array}{l}OA \bot \left( {OBC} \right) \Rightarrow OA \bot BC\\OH \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {OAH} \right)\)
Lại có \(BC\parallel B'C'\)
Vậy \(B'C' \bot \left( {OAH} \right)\).
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông với \(AB\) là cạnh góc vuông và có cạnh \(SA\) vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Cho \(M,N,P,Q\) lần lượt là trung điểm của \(SB,AB,CD,SC\). Chứng minh rằng:
a) \(AB \bot \left( {MNPQ} \right)\);
b) \(MQ \bot \left( {SAB} \right)\).
Phương pháp giải:
‒ Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.
Lời giải chi tiết:
a) Ta có: \(M\) là trung điểm của \(SB\)
\(Q\) là trung điểm của \(SC\)
\( \Rightarrow MQ\) là đường trung bình của \(\Delta SBC\)
\(\left. \begin{array}{l} \Rightarrow MQ\parallel BC\\BC \bot AB\end{array} \right\} \Rightarrow MQ \bot AB\)
\(M\) là trung điểm của \(SB\)
\(N\) là trung điểm của \(AB\)
\( \Rightarrow MN\) là đường trung bình của \(\Delta SAB\)
\(\left. \begin{array}{l} \Rightarrow MN\parallel SA\\SA \bot \left( {ABCD} \right)\end{array} \right\} \Rightarrow MN \bot \left( {ABCD} \right) \Rightarrow MN \bot AB\)
\(\left. \begin{array}{l}AB \bot MQ\\AB \bot MN\end{array} \right\} \Rightarrow AB \bot \left( {MNPQ} \right)\)
b) Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)
Lại có \(MQ\parallel BC\).
Vậy \(MQ \bot \left( {SAB} \right)\).
Một kệ sách có bốn trụ chống và các ngăn làm bằng các tấm gỗ (Hình 18). Làm thể nào dùng một êke để kiểm tra xem các tấm gỗ có vuông góc với mỗi trụ chống và song song với nhau hay không? Giải thích cách làm.
Phương pháp giải:
Sử dụng các định lí:
‒ Nếu đường thẳng \(d\) vuông góc với hai đường thẳng cắt nhau \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( \alpha \right)\) thì \(d \bot \left( \alpha \right)\).
‒ Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
Lời giải chi tiết:
‒ Ta dùng êke kiểm tra hai mép tấm gỗ vuông góc với trụ chống thì tấm gỗ vuông góc với trụ chống.
‒ Ta kiểm tra tấm gỗ vuông góc với các trụ chống thì các trụ chống song song với nhau.
Mục 2 của SGK Toán 11 tập 2 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết hiệu quả các bài tập trong mục này, học sinh cần nắm vững lý thuyết cơ bản, các định nghĩa, định lý và công thức liên quan. Việc hiểu rõ bản chất của vấn đề là yếu tố then chốt để lựa chọn phương pháp giải phù hợp.
Thông thường, mục 2 sẽ bao gồm các nội dung sau:
Trong mục 2 trang 60, 61, 62, học sinh có thể gặp các dạng bài tập sau:
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong mục 2 trang 60, 61, 62 SGK Toán 11 tập 2 - Chân trời sáng tạo:
Đề bài: (Giả sử đề bài cụ thể ở đây)
Lời giải: (Giải thích chi tiết từng bước giải, kèm theo các công thức và định lý liên quan)
Đề bài: (Giả sử đề bài cụ thể ở đây)
Lời giải: (Giải thích chi tiết từng bước giải, kèm theo các công thức và định lý liên quan)
Đề bài: (Giả sử đề bài cụ thể ở đây)
Lời giải: (Giải thích chi tiết từng bước giải, kèm theo các công thức và định lý liên quan)
Để giải các bài tập Toán 11 tập 2 một cách nhanh chóng và hiệu quả, học sinh có thể áp dụng một số mẹo sau:
Kiến thức trong mục 2 có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học và các ngành khoa học khác. Ví dụ, các khái niệm về hàm số, đồ thị hàm số được sử dụng trong vật lý, kinh tế, thống kê và nhiều lĩnh vực khác. Việc nắm vững kiến thức này sẽ giúp học sinh có nền tảng vững chắc để học tập và nghiên cứu các môn học khác.
Ngoài SGK Toán 11 tập 2 - Chân trời sáng tạo, học sinh có thể tham khảo thêm các tài liệu sau để nâng cao kiến thức và kỹ năng giải toán:
Hy vọng rằng với những hướng dẫn chi tiết và hữu ích trên đây, các em học sinh sẽ tự tin giải quyết các bài tập trong mục 2 trang 60, 61, 62 SGK Toán 11 tập 2 - Chân trời sáng tạo. Chúc các em học tập tốt!