Logo Header
  1. Môn Toán
  2. Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo

Chào mừng bạn đến với bài học về Lý thuyết Khoảng cách trong không gian, một phần quan trọng của chương trình Toán 11 Chân trời sáng tạo. Bài học này sẽ cung cấp cho bạn những kiến thức nền tảng và các công thức cần thiết để giải quyết các bài toán liên quan đến khoảng cách trong không gian.

Chúng ta sẽ cùng nhau khám phá cách tính khoảng cách giữa hai điểm, từ một điểm đến một đường thẳng và từ một điểm đến một mặt phẳng trong không gian ba chiều.

1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng

1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng

Nếu H là hình chiếu vuông góc của điểm M trên đường thẳng a thì độ dài đoạn MH được gọi là khoảng cách từ M đến đường thẳng a, kí hiệu d(M, a).

Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M, (P)).

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 1

Quy ước:

  • d(M, a) = 0 khi và chỉ khi M thuộc a;
  • d(M, (P)) = 0 khi và chỉ khi M thuộc (P).

Nhận xét:

a) Lấy điểm N tùy ý trên đường thẳng a, ta luôn có \(d\left( {M,a} \right) \le MN\).

b) Lấy điểm N tùy ý trên mặt phẳng \(\left( P \right)\), ta luôn có \(d\left( {M,\left( P \right)} \right) \le MN\).

2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

Khoảng cách giữa hai đường thẳng song song a và b là khoảng cách từ một điểm bất kì trên a đến b, kí hiệu d(a, b).

Khoảng cách giữa đường thẳng a đến mặt phẳng (P) song song với a là khoảng cách từ một điểm bất kì trên a đến (P), kí hiệu d(a, (P)).

Khoảng cách giữa hai mặt phẳng song song (P) và (Q) là khoảng cách từ một điểm bất kì trên (P) đến (Q), kí hiệu d((P), (Q)).

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 2

3. Khoảng cách giữa hai đường thẳng chéo nhau

Đường thẳng c vừa vuông góc, vừa cắt hai đường thẳng chéo nhau a và b được gọi là đường vuông góc chung của a và b.

Nếu đường vuông góc chung của hai đường thẳng chéo nhau a và b cắt chúng lần lượt tại I và J thì đoạn IJ gọi là đoạn vuông góc chung của a và b.

Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó, kí hiệu d(a, b)

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 3

Chú ý:

a) Khoảng cách giữa hai đường thẳng chéo nhau a và b bằng khoảng cách giữa một trong hai đường thẳng đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

b) Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó.

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 4

4. Công thức tính thể tích của khối chóp, khối lăng trụ, khối hộp

Thể tích khối hộp chữ nhật bằng ba kích thước:

\(V = abc\)

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 5

Thể tích khối chóp bằng một phần ba diện tích đáy nhân với chiều cao:

\(V = \frac{1}{3}S.h\)

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 6

Thể tích khối chóp cụt đều có chiều cao h và diện tích hai đáy S, S’:

\(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\)

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 7

Thể tích khối lăng trụ bằng tích diện tích đáy và chiều cao:

\(V = Sh\)

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 8

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo 9

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Ôn tập Toán lớp 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Lý thuyết Khoảng cách trong không gian - Toán 11 Chân trời sáng tạo

Trong chương trình Toán 11 Chân trời sáng tạo, phần Hình học không gian đóng vai trò quan trọng, và việc nắm vững lý thuyết về khoảng cách là nền tảng để giải quyết các bài toán phức tạp hơn. Bài viết này sẽ trình bày chi tiết lý thuyết về khoảng cách trong không gian, bao gồm các định nghĩa, công thức và ví dụ minh họa.

1. Khoảng cách giữa hai điểm

Trong không gian Oxyz, cho hai điểm A(xA, yA, zA) và B(xB, yB, zB). Khoảng cách giữa hai điểm A và B được tính theo công thức:

AB = √((xB - xA)2 + (yB - yA)2 + (zB - zA)2)

Ví dụ: Cho A(1, 2, 3) và B(4, 5, 6). Khi đó:

AB = √((4-1)2 + (5-2)2 + (6-3)2) = √(32 + 32 + 32) = √27 = 3√3

2. Khoảng cách từ một điểm đến một đường thẳng

Cho điểm M(x0, y0, z0) và đường thẳng Δ có phương trình:

{ x = x0 + at y = y0 + bt z = z0 + ct }

Khoảng cách d từ điểm M đến đường thẳng Δ được tính theo công thức:

d = |[ (x0 - x1)b - (y0 - y1)a ] / √(a2 + b2 + c2)|

Trong đó (x1, y1, z1) là một điểm thuộc đường thẳng Δ.

3. Khoảng cách từ một điểm đến một mặt phẳng

Cho điểm M(x0, y0, z0) và mặt phẳng (P) có phương trình:

Ax + By + Cz + D = 0

Khoảng cách d từ điểm M đến mặt phẳng (P) được tính theo công thức:

d = |Ax0 + By0 + Cz0 + D| / √(A2 + B2 + C2)

Ví dụ: Cho điểm M(1, 2, 3) và mặt phẳng (P): 2x - y + z + 1 = 0. Khi đó:

d = |2(1) - 2 + 3 + 1| / √(22 + (-1)2 + 12) = |4| / √6 = 4/√6 = (4√6)/6 = (2√6)/3

4. Ứng dụng của lý thuyết khoảng cách trong không gian

Lý thuyết khoảng cách trong không gian có nhiều ứng dụng trong thực tế, chẳng hạn như:

  • Tính khoảng cách giữa các vật thể trong không gian.
  • Xác định vị trí tương đối của các điểm, đường thẳng và mặt phẳng.
  • Giải quyết các bài toán về tối ưu hóa trong không gian.

5. Bài tập vận dụng

Để củng cố kiến thức về lý thuyết khoảng cách trong không gian, bạn có thể thực hành giải các bài tập sau:

  1. Tính khoảng cách giữa hai điểm A(2, -1, 0) và B(0, 3, -4).
  2. Tính khoảng cách từ điểm M(1, 1, 1) đến đường thẳng có phương trình tham số: { x = 2 + t, y = 1 - t, z = 3 + 2t }.
  3. Tính khoảng cách từ điểm N(0, 0, 0) đến mặt phẳng 3x - 4y + 12z - 5 = 0.

6. Kết luận

Lý thuyết Khoảng cách trong không gian là một phần quan trọng của chương trình Toán 11 Chân trời sáng tạo. Việc nắm vững lý thuyết này sẽ giúp bạn giải quyết các bài toán hình học không gian một cách hiệu quả và chính xác. Hy vọng bài viết này đã cung cấp cho bạn những kiến thức hữu ích và giúp bạn tự tin hơn trong việc học tập.

Tài liệu, đề thi và đáp án Toán 11