Logo Header
  1. Môn Toán
  2. Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo

Lý thuyết Giới hạn của hàm số - Nền tảng Toán học 11

Chào mừng bạn đến với bài học về Lý thuyết Giới hạn của hàm số, một trong những khái niệm quan trọng nhất trong chương trình Toán 11 Chân trời sáng tạo. Bài học này sẽ cung cấp cho bạn kiến thức cơ bản và nâng cao về giới hạn, giúp bạn giải quyết các bài toán liên quan một cách hiệu quả.

Tại giaitoan.edu.vn, chúng tôi cam kết mang đến cho bạn trải nghiệm học tập trực tuyến tốt nhất với các bài giảng được trình bày rõ ràng, dễ hiểu và đầy đủ.

1. Giới hạn hữu hạn của hàm số tại một điểm

1. Giới hạn hữu hạn của hàm số tại một điểm

Cho khoảng K chứa điểm \({x_0}\)và hàm số \(y = f(x)\) xác định trên K hoặc trên \(K\backslash \left\{ {{x_0}} \right\}\). Ta nói hàm số \(y = f(x)\) có giới hạn hữu hạn là số L khi \(x\) dần tới \({x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì, \({x_n} \in K\backslash \left\{ {{x_0}} \right\}\) và \({x_n} \to {x_0}\), ta có\(f({x_n}) \to L\)

Kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) hay \(f(x) \to L\), khi \({x_n} \to {x_0}\).

2. Các phép toán về giới hạn hữu hạn của hàm số

a, Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g(x) = M\) thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = L \pm M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x).g(x)} \right] = L.M\)

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {\frac{{f(x)}}{{g(x)}}} \right] = \frac{L}{M}\left( {M \ne 0} \right)\)

b, Nếu \(f(x) \ge 0\) với mọi \(x \in \left( {a;b} \right)\backslash \left\{ {{x_0}} \right\}\) và \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L\) thì \(L \ge 0\)và \(\mathop {\lim }\limits_{x \to {x_0}} \sqrt {f(x)} = \sqrt L \).

* Nhận xét:

\(\begin{array}{l}a,\mathop {\lim }\limits_{x \to {x_0}} {x^k} = {x_0}^k,k \in {\mathbb{Z}^ + }.\\b,\mathop {\lim }\limits_{x \to {x_0}} \left[ {c.f(x)} \right] = c.\mathop {\lim }\limits_{x \to {x_0}} f(x)\end{array}\)

(\(c \in \mathbb{R}\), nếu tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x) \in \mathbb{R}\))

3. Giới hạn một phía

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói \(y = f(x)\) có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì,\({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a;{x_0}} \right)\).

Ta nói \(y = f(x)\)có giới hạn bên phải là số L khi \(x \to {x_0}\) nếu với dãy số \(\left( {{x_n}} \right)\)bất kì,\(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = L\).

*Chú ý:

  • \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = L \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = \mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L\)
  • \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) \ne \mathop {\lim }\limits_{x \to {x_0}^ + } f(x)\) thì không tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x)\).
  • Các phép toán về giới hạn hữu hạn của hàm số ở Mục 2 vẫn đúng khi ta thay \(x \to {x_0}\)bằng \(x \to {x_0}^ + \)hoặc \(x \to {x_0}^ - \).

4. Giới hạn hữu hạn của hàm số tại vô cực

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta nói hàm số \(f(x)\)có giới hạn là số L khi \(x \to + \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} > a\) và \({x_n} \to + \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to + \infty \).

Cho hàm số \(y = f(x)\) xác định trên khoảng \(\left( { - \infty ;a} \right)\). Ta nói hàm số \(f(x)\) có giới hạn là số L khi \(x \to - \infty \) nếu với dãy số \(\left( {{x_n}} \right)\) bất kì \({x_n} < a\) và \({x_n} \to - \infty \)ta có \(f({x_n}) \to L\), kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f(x) = L\) hay \(f(x) \to L\) khi \(x \to - \infty \).

* Nhận xét:

  • Các quy tắc tính giới hạn hữu hạn tại một điểm cũng đúng cho giới hạn hữu hạn tại vô cực.
  • Với c là hằng số, k là một số nguyên dương ta có:

\(\mathop {\lim }\limits_{x \to \pm \infty } c = c,\)\(\mathop {\lim }\limits_{x \to \pm \infty } (\frac{c}{{{x^k}}}) = 0\)

5. Giới hạn vô cực của hàm số tại một điểm

- Cho hàm số \(y = f(x)\)xác định trên khoảng \(\left( {{x_0};b} \right)\).

Ta nói hàm số \(f(x)\) có giới hạn bên phải là \( + \infty \) khi \(x \to {x_0}\) về bên phải nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \({x_0} < {x_n} < b\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = + \infty \)

Ta nói hàm số \(f(x)\) ó giới hạn bên phải là \( - \infty \) khi \(x \to {x_0}\) về bên trái nếu với dãy số \(\left( {{x_n}} \right)\) bất kì thỏa mãn \(a < {x_n} < {x_0}\) và \({x_n} \to {x_0}\) ta có \(f({x_n}) \to + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = + \infty \)

Các giới hạn một bên\(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = - \infty \), \(\mathop {\lim }\limits_{x \to {x_0}^ - } f(x) = - \infty \) được định nghĩa tương tự.

* Chú ý:

  • \(\mathop {\lim }\limits_{x \to + \infty } {x^k} = + \infty ,k \in {\mathbb{Z}^ + }.\)
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = + \infty ,\) k là số nguyên dương chẵn.
  • \(\mathop {\lim }\limits_{x \to - \infty } {x^k} = - \infty ,\) k là số nguyên dương lẻ.
  • \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty ,\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \left( {a \in \mathbb{R}} \right)\)
  • Giới hạn vô cực

Nếu \(\mathop {\lim }\limits_{x \to {x_0}^ + } f(x) = L \ne 0\) và \(\mathop {\lim }\limits_{x \to {x_0}^ + } g(x) = + \infty \)hoặc \(\mathop {\lim }\limits_{x \to {x_0}^ + } g(x) = - \infty \)thì \(\mathop {\lim }\limits_{x \to {x_0}^ + } \left[ {f(x).g(x)} \right]\) được tính như sau:

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo 1

Các quy tắc trên vẫn đúng khi thay \({x_0}^ + \)thành \({x_0}^ - \)(hoặc \( + \infty \),\( - \infty \))

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo 2

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng soạn toán. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Lý thuyết Giới hạn của hàm số - SGK Toán 11 Chân trời sáng tạo

Giới hạn của hàm số là một khái niệm nền tảng trong giải tích, đóng vai trò quan trọng trong việc nghiên cứu sự biến đổi của hàm số khi biến số tiến tới một giá trị nhất định. Trong chương trình Toán 11 Chân trời sáng tạo, học sinh sẽ được làm quen với khái niệm này thông qua các bài học và bài tập thực hành.

1. Khái niệm Giới hạn của hàm số

Giới hạn của hàm số f(x) khi x tiến tới a, ký hiệu là limx→a f(x), là giá trị mà f(x) tiến tới khi x tiến gần a nhưng không bằng a. Nói cách khác, khi x càng gần a, f(x) càng gần một giá trị L nào đó. Giá trị L được gọi là giới hạn của f(x) khi x tiến tới a.

2. Các dạng Giới hạn vô cùng

Ngoài giới hạn hữu hạn, còn có các dạng giới hạn vô cùng, bao gồm:

  • limx→a f(x) = +∞ (f(x) tiến tới dương vô cùng khi x tiến tới a)
  • limx→a f(x) = -∞ (f(x) tiến tới âm vô cùng khi x tiến tới a)
  • limx→+∞ f(x) = L (f(x) tiến tới L khi x tiến tới dương vô cùng)
  • limx→-∞ f(x) = L (f(x) tiến tới L khi x tiến tới âm vô cùng)

3. Tính chất của Giới hạn

Việc tính toán giới hạn thường dựa trên các tính chất sau:

  • Giới hạn của một tổng bằng tổng các giới hạn.
  • Giới hạn của một tích bằng tích các giới hạn.
  • Giới hạn của một thương bằng thương các giới hạn (với mẫu khác 0).
  • Giới hạn của một hàm hợp bằng tích của các giới hạn.

4. Các phương pháp tính Giới hạn

Có nhiều phương pháp để tính giới hạn, bao gồm:

  • Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn.
  • Phương pháp phân tích thành nhân tử: Phân tích tử số và mẫu số thành nhân tử để rút gọn biểu thức.
  • Phương pháp nhân liên hợp: Nhân tử số và mẫu số với liên hợp của biểu thức để khử dạng vô định.
  • Phương pháp sử dụng giới hạn đặc biệt: Áp dụng các giới hạn đặc biệt đã biết để tính giới hạn.

5. Ví dụ minh họa

Ví dụ 1: Tính limx→2 (x2 - 4) / (x - 2)

Giải: Ta có (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2). Do đó, limx→2 (x2 - 4) / (x - 2) = limx→2 (x + 2) = 4.

Ví dụ 2: Tính limx→∞ (2x + 1) / (x - 3)

Giải: Chia cả tử và mẫu cho x, ta được limx→∞ (2 + 1/x) / (1 - 3/x) = (2 + 0) / (1 - 0) = 2.

6. Ứng dụng của Giới hạn

Khái niệm giới hạn có nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:

  • Tính đạo hàm của hàm số.
  • Tính tích phân của hàm số.
  • Nghiên cứu sự hội tụ của dãy số và chuỗi số.
  • Giải quyết các bài toán về vật lý, kinh tế và kỹ thuật.

7. Bài tập luyện tập

Để củng cố kiến thức về giới hạn, bạn có thể thực hành giải các bài tập sau:

  1. Tính limx→1 (x3 - 1) / (x - 1)
  2. Tính limx→0 sin(x) / x
  3. Tính limx→∞ (3x2 + 2x - 1) / (x2 + 1)

Hy vọng bài học này đã giúp bạn hiểu rõ hơn về lý thuyết giới hạn của hàm số. Chúc bạn học tập tốt!

Tài liệu, đề thi và đáp án Toán 11