Bài 1 trang 41 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Cấp số cho và cấp số nhân. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến cấp số.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
Đề bài
Dùng định nghĩa để tính đạo hàm của các hàm số sau:
a) \(f\left( x \right) = - {x^2}\);
b) \(f\left( x \right) = {x^3} - 2x\);
c) \(f\left( x \right) = \frac{4}{x}\).
Phương pháp giải - Xem chi tiết
Tính giới hạn \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\).
Lời giải chi tiết
a) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( { - {x^2}} \right) - \left( { - x_0^2} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {{x^2} - x_0^2} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - \left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( { - x - {x_0}} \right) = - {x_0} - {x_0} = - 2{{\rm{x}}_0}\)
Vậy \(f'\left( x \right) = {\left( { - {x^2}} \right)^\prime } = - 2x\) trên \(\mathbb{R}\).
b) Với bất kì \({x_0} \in \mathbb{R}\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - 2{\rm{x}}} \right) - \left( {x_0^3 - 2{{\rm{x}}_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^3} - 2{\rm{x}} - x_0^3 + 2{{\rm{x}}_0}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {{x^3} - x_0^3} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2} \right) - 2\left( {x - {x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x.{x_0} + x_0^2 - 2} \right)}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^2} + x.{x_0} + x_0^2 - 2} \right) = x_0^2 + {x_0}.{x_0} + x_0^2 - 2 = 3{\rm{x}}_0^2 - 2\)
Vậy \(f'\left( x \right) = {\left( {{x^3} - 2{\rm{x}}} \right)^\prime } = 3{{\rm{x}}^2} - 2\) trên \(\mathbb{R}\).
c) Với bất kì \({x_0} \ne 0\), ta có:
\(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{4}{x} - \frac{4}{{{x_0}}}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\frac{{4{x_0} - 4x}}{{x{x_0}}}}}{{x - {x_0}}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{4{x_0} - 4x}}{{x{x_0}\left( {x - {x_0}} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 4\left( {x - {x_0}} \right)}}{{x{x_0}\left( {x - {x_0}} \right)}}\)
\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{ - 4}}{{x{{\rm{x}}_0}}} = \frac{{ - 4}}{{{x_0}.{x_0}}} = - \frac{4}{{x_0^2}}\)
Vậy \(f'\left( x \right) = {\left( {\frac{4}{x}} \right)^\prime } = - \frac{4}{{{x^2}}}\) trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Bài 1 trang 41 SGK Toán 11 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình ôn tập về cấp số cho và cấp số nhân. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như:
Dưới đây là nội dung chi tiết của bài tập và lời giải:
(Nội dung bài tập sẽ được chèn vào đây. Ví dụ: Cho cấp số cộng có số hạng đầu u1 = 2 và công sai d = 3. Tìm số hạng thứ 5 của cấp số này.)
Để giải bài tập này, chúng ta sẽ sử dụng công thức tính số hạng tổng quát của cấp số cộng:
un = u1 + (n - 1)d
Trong đó:
Áp dụng công thức vào bài tập, ta có:
u5 = 2 + (5 - 1) * 3 = 2 + 4 * 3 = 2 + 12 = 14
Vậy, số hạng thứ 5 của cấp số cộng là 14.
Ngoài bài tập trên, học sinh có thể gặp các dạng bài tập tương tự như:
Để giải các bài tập về cấp số một cách hiệu quả, học sinh nên:
(Thêm một vài ví dụ minh họa khác với lời giải chi tiết để học sinh hiểu rõ hơn về cách giải bài tập.)
Bài 1 trang 41 SGK Toán 11 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về cấp số cho và cấp số nhân. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán.
Giaitoan.edu.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục kiến thức Toán học. Hãy truy cập website của chúng tôi để tìm hiểu thêm về các bài giải Toán 11 và các môn học khác.
Công thức | Mô tả |
---|---|
un = u1 + (n - 1)d | Số hạng tổng quát của cấp số cộng |
Sn = n/2 * (u1 + un) | Tổng của n số hạng đầu của cấp số cộng |
un = u1 * q(n-1) | Số hạng tổng quát của cấp số nhân |
Sn = u1 * (1 - qn) / (1 - q) | Tổng của n số hạng đầu của cấp số nhân (q ≠ 1) |