Bài 6 trang 60 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng của đạo hàm để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán hiệu quả.
Một loại vi khuẩn được nuôi cấy trong phòng thí nghiệm, cứ mỗi phút số lượng lại tăng lên gấp đôi số lượng đang có. Từ một vi khuẩn ban đầu, hãy tính tổng số vi khuẩn có trong ống nghiệm sau 20 phút.
Đề bài
Một loại vi khuẩn được nuôi cấy trong phòng thí nghiệm, cứ mỗi phút số lượng lại tăng lên gấp đôi số lượng đang có. Từ một vi khuẩn ban đầu, hãy tính tổng số vi khuẩn có trong ống nghiệm sau 20 phút.
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết
Số lượng vi khuẩn trong ống nghiệm sau \(n\) phút là một cấp số nhân có số hạng đầu \({u_1} = 1\) và công bội \(q = 2\).
Số lượng vi khuẩn ban đầu là \({u_1} = 1\).
Số lượng vi khuẩn sau 1 phút là \({u_2}\).
Số lượng vi khuẩn sau 2 phút là \({u_3}\).
...
Số lượng vi khuẩn trong ống nghiệm sau 20 phút là:
\({u_{21}} = {u_1}.{q^{n - 1}} = {1.2^{21 - 1}} = 1048576\) (vi khuẩn).
Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và ứng dụng của đạo hàm. Dưới đây là giải chi tiết bài tập này:
Bài 6 yêu cầu học sinh giải các bài toán liên quan đến việc xét tính đơn điệu của hàm số, tìm cực trị và vẽ đồ thị hàm số. Cụ thể, bài tập có thể bao gồm:
Xác định khoảng đồng biến, nghịch biến của hàm số.
Tìm điểm cực đại, cực tiểu của hàm số.
Vẽ đồ thị hàm số dựa trên các yếu tố đã tìm được.
Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Định nghĩa hàm số đơn điệu: Hàm số f(x) được gọi là đồng biến trên khoảng (a, b) nếu với mọi x1, x2 thuộc (a, b) và x1 < x2 thì f(x1) ≤ f(x2). Hàm số f(x) được gọi là nghịch biến trên khoảng (a, b) nếu với mọi x1, x2 thuộc (a, b) và x1 < x2 thì f(x1) ≥ f(x2).
Điều kiện để hàm số đơn điệu: Hàm số f(x) đồng biến trên khoảng (a, b) khi và chỉ khi f'(x) ≥ 0 với mọi x thuộc (a, b). Hàm số f(x) nghịch biến trên khoảng (a, b) khi và chỉ khi f'(x) ≤ 0 với mọi x thuộc (a, b).
Điểm cực trị: Điểm x0 được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng mở (a, b) chứa x0 sao cho f(x) ≤ f(x0) với mọi x thuộc (a, b). Điểm x0 được gọi là điểm cực tiểu của hàm số f(x) nếu tồn tại một khoảng mở (a, b) chứa x0 sao cho f(x) ≥ f(x0) với mọi x thuộc (a, b).
Điều kiện cần để hàm số có cực trị: Nếu hàm số f(x) có cực trị tại x0 thì f'(x0) = 0.
Ví dụ minh họa:
Xét hàm số f(x) = x3 - 3x2 + 2. Để tìm khoảng đồng biến, nghịch biến, ta tính đạo hàm f'(x) = 3x2 - 6x. Giải phương trình f'(x) = 0, ta được x = 0 và x = 2. Xét dấu f'(x) trên các khoảng (-∞, 0), (0, 2) và (2, +∞), ta thấy:
Trên khoảng (-∞, 0), f'(x) > 0 nên hàm số đồng biến.
Trên khoảng (0, 2), f'(x) < 0 nên hàm số nghịch biến.
Trên khoảng (2, +∞), f'(x) > 0 nên hàm số đồng biến.
Vậy hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Điểm x = 0 là điểm cực đại, x = 2 là điểm cực tiểu.
Luôn kiểm tra điều kiện xác định của hàm số trước khi thực hiện các phép toán.
Sử dụng các công thức đạo hàm cơ bản một cách chính xác.
Vẽ đồ thị hàm số để kiểm tra lại kết quả.
Bài 6 trang 60 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh rèn luyện kỹ năng giải toán và hiểu sâu hơn về hàm số. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải bài tập này.
Ngoài ra, các em có thể tham khảo thêm các bài giải khác tại giaitoan.edu.vn để nâng cao kiến thức và kỹ năng giải toán.