Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 5 trang 38, 39 SGK Toán 11 tập 1 chương trình Chân trời sáng tạo. Tại giaitoan.edu.vn, chúng tôi cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải bài tập một cách khoa học, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Mục tiêu của chúng tôi là hỗ trợ các em học toán online hiệu quả, tiết kiệm thời gian và đạt kết quả tốt nhất.
Trong mặt phẳng toạ độ Oxy, cho C là điểm trên trục côtang có toạ độ là (-1; 1) (Hình 7).
Trong mặt phẳng toạ độ Oxy, cho C là điểm trên trục côtang có toạ độ là (-1; 1) (Hình 7). Những điểm nào biểu diễn góc lượng giác x có \(cotx = - 1\)? Xác định số đo của các góc lượng giác đó.
Phương pháp giải:
Quan sát hình vẽ để trả lời.
Lời giải chi tiết:
Trên đường tròn lượng giác hai điểm M và N biểu diễn các góc lượng giác có số đo góc x thỏa mãn \(cotx = - 1\).
Điểm M biểu diễn các góc lượng giác có số đo góc \(\frac{{3\pi }}{4} + k2\pi ,k \in \mathbb{Z}\).
Điểm N biểu diễn các góc lượng giác có số đo góc \( - \frac{\pi }{4} + k2\pi ,k \in \mathbb{Z}\).
Giải các phương trình sau:
\(\begin{array}{*{20}{l}}{a){\rm{ }}cotx = 1;}\\{b){\rm{ }}cot\left( {3x + 30^\circ } \right) = cot75^\circ .}\end{array}\)
Phương pháp giải:
Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( {0;\pi } \right)\) thoả mãn \(\cot \alpha = m\). Khi đó:
\(\cot {\rm{x}} = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)
\(\cot x = \cot {\alpha ^o} \Leftrightarrow x = {\alpha ^o} + k{180^o},k \in \mathbb{Z}.\)
Lời giải chi tiết:
a) Vì \(cotx = 1\)nên phương trình \(cotx = 1\) có các nghiệm là \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).
Vậy tập nghiệm của phương trình là: \(S = \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\).
\(\begin{array}{*{20}{l}}{b){\rm{ }}cot\left( {3x + 30^\circ } \right) = cot75^\circ }\\{ \Leftrightarrow \;3x + 30^\circ = 75^\circ + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = 45^\circ + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}.}\\{ \Leftrightarrow \;x = 15^\circ + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\end{array}\)
Vậy tập nghiệm của phương trình là: \(S = \{ 15^\circ + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)
Mục 5 trong SGK Toán 11 tập 1 chương trình Chân trời sáng tạo tập trung vào việc nghiên cứu về phép biến hình. Cụ thể, các em sẽ được làm quen với các khái niệm như phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm. Việc nắm vững các phép biến hình này là nền tảng quan trọng để hiểu sâu hơn về hình học không gian và các ứng dụng của nó trong thực tế.
Bài tập mục 5 trang 38, 39 SGK Toán 11 tập 1 Chân trời sáng tạo bao gồm các dạng bài tập khác nhau, từ việc xác định các yếu tố của phép biến hình đến việc chứng minh tính chất của các hình biến hình. Dưới đây là phân tích chi tiết từng bài tập:
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình qua phép tịnh tiến. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép tịnh tiến và cách xác định tọa độ của điểm ảnh sau phép tịnh tiến.
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình qua phép quay. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép quay và cách xác định tọa độ của điểm ảnh sau phép quay.
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình qua phép đối xứng trục. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép đối xứng trục và cách xác định tọa độ của điểm ảnh sau phép đối xứng trục.
Bài tập này yêu cầu các em xác định ảnh của một điểm hoặc một hình qua phép đối xứng tâm. Để giải bài tập này, các em cần hiểu rõ định nghĩa của phép đối xứng tâm và cách xác định tọa độ của điểm ảnh sau phép đối xứng tâm.
Để giải các bài tập về phép biến hình một cách hiệu quả, các em cần:
Phép biến hình có rất nhiều ứng dụng trong thực tế, ví dụ như:
Hy vọng rằng với lời giải chi tiết và phương pháp giải bài tập hiệu quả mà chúng tôi đã cung cấp, các em sẽ tự tin hơn trong việc học tập và giải quyết các bài tập về phép biến hình trong chương trình Toán 11 tập 1 Chân trời sáng tạo. Chúc các em học tốt!