Chào mừng các em học sinh đến với lời giải chi tiết Bài 16 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo. Bài học này thuộc chương trình Toán 11, tập trung vào việc vận dụng kiến thức đã học để giải quyết các bài toán thực tế.
giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Giải các bất phương trình:
Đề bài
Giải các bất phương trình:
a) \({\left( {\frac{1}{9}} \right)^{x + 1}} > \frac{1}{{81}}\);
b) \({\left( {\sqrt[4]{3}} \right)^x} \le {27.3^x}\);
c) \({\log _2}\left( {x + 1} \right) \le {\log _2}\left( {2 - 4{\rm{x}}} \right)\).
Phương pháp giải - Xem chi tiết
Đưa 2 vế của bất phương trình về cùng cơ số.
Lời giải chi tiết
a) \({\left( {\frac{1}{9}} \right)^{x + 1}} > \frac{1}{{81}} \Leftrightarrow {\left( {\frac{1}{9}} \right)^{x + 1}} > {\left( {\frac{1}{9}} \right)^2} \Leftrightarrow x + 1 < 2\) (do \(0 < \frac{1}{9} < 1\)) \( \Leftrightarrow x < 1\).
b) \({\left( {\sqrt[4]{3}} \right)^x} \le {27.3^x} \Leftrightarrow {\left( {{3^{\frac{1}{4}}}} \right)^x} \le {3^3}{.3^x} \Leftrightarrow {3^{\frac{x}{4}}} \le {3^{3 + x}} \Leftrightarrow \frac{x}{4} \le 3 + x\) (do \(3 > 1\))
\( \Leftrightarrow - \frac{3}{4}x \le 3 \Leftrightarrow x \ge - 4\).
c) \({\log _2}\left( {x + 1} \right) \le {\log _2}\left( {2 - 4{\rm{x}}} \right)\)
ĐKXĐ: \(\left\{ \begin{array}{l}x + 1 > 0\\2 - 4{\rm{x}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > - 1\\x < \frac{1}{2}\end{array} \right. \Leftrightarrow - 1 < x < \frac{1}{2}\)
\(BPT \Leftrightarrow x + 1 \le 2 - 4{\rm{x}} \Leftrightarrow 5{\rm{x}} \le 1 \Leftrightarrow x \le \frac{1}{5}\)
Kết hợp với điều kiện ta được nghiệm của bất phương trình là \( - 1 < x \le \frac{1}{5}\).
Bài 16 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
(Giả sử bài tập có nội dung cụ thể, phần này sẽ trình bày lời giải chi tiết từng bước, kèm theo giải thích rõ ràng. Ví dụ:)
Bài 16: Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x) và tìm các điểm cực trị của hàm số.
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Ta xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, các em có thể tự giải thêm các bài tập tương tự trong SGK và sách bài tập. Ngoài ra, các em cũng nên tìm hiểu thêm về các ứng dụng của đạo hàm trong thực tế, như tìm cực trị của hàm số, xét tính đơn điệu của hàm số, và giải các bài toán tối ưu.
Bài 16 trang 35 SGK Toán 11 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu rõ hơn về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập này, các em sẽ học tập tốt hơn và đạt kết quả cao trong môn Toán.
Lưu ý: Đây chỉ là một ví dụ minh họa. Nội dung chi tiết của lời giải sẽ phụ thuộc vào nội dung cụ thể của bài tập trong SGK.
Khái niệm | Giải thích |
---|---|
Đạo hàm | Tốc độ thay đổi tức thời của hàm số tại một điểm. |
Điểm cực trị | Điểm mà tại đó hàm số đạt giá trị lớn nhất hoặc nhỏ nhất trong một khoảng nào đó. |