Bài 10 trang 128 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để tìm đạo hàm của hàm số và giải các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).
Đề bài
Cho hình chóp \(S.ABCD\) với \(ABCD\) là hình thoi cạnh \(a\), tam giác \(SA{\rm{D}}\) đều. \(M\) là điểm trên cạnh \(AB\), \(\left( \alpha \right)\) là mặt phẳng qua \(M\) và \(\left( \alpha \right)\parallel \left( {SAD} \right)\) cắt \(CD,SC,SB\) lần lượt tại \(N,P,Q\).
a) Chứng minh rằng \(MNPQ\) là hình thang cân.
b) Đặt \(AM = x\), tính diện tích \(MNPQ\) theo \(a\) và \(x\).
Phương pháp giải - Xem chi tiết
Sử dụng các định lí:
‒ Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đổi một song song.
‒ Cho hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) song song với nhau. Nếu \(\left( R \right)\) cắt \(\left( P \right)\) thì cắt \(\left( Q \right)\) và hai giao tuyến của chúng song song.
Lời giải chi tiết
a) Ta có:
\(\left. \begin{array}{l}\left( \alpha \right) \cap \left( {SBC} \right) = PQ\\\left( \alpha \right) \cap \left( {ABCD} \right) = MN\\\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\end{array} \right\} \Rightarrow MN\parallel PQ\parallel BC\)
\( \Rightarrow MNPQ\) là hình thang (1).
\(\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha \right) \cap \left( {SAB} \right) = MQ\\\left( {SA{\rm{D}}} \right) \cap \left( {SAB} \right) = SA\end{array} \right\} \Rightarrow MQ\parallel SA \Rightarrow \frac{{MQ}}{{SA}} = \frac{{BM}}{{AB}}\)
\(\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha \right) \cap \left( {SC{\rm{D}}} \right) = NP\\\left( {SA{\rm{D}}} \right) \cap \left( {SC{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow NP\parallel SD \Rightarrow \frac{{NP}}{{SD}} = \frac{{CN}}{{C{\rm{D}}}}\)
\(\left. \begin{array}{l}\left( \alpha \right)\parallel \left( {SA{\rm{D}}} \right)\\\left( \alpha \right) \cap \left( {ABC{\rm{D}}} \right) = MN\\\left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = AD\end{array} \right\} \Rightarrow MN\parallel AD\parallel BC \Rightarrow \frac{{BM}}{{AB}} = \frac{{CN}}{{C{\rm{D}}}}\)
\( \Rightarrow \frac{{MQ}}{{SA}} = \frac{{NP}}{{S{\rm{D}}}}\)
Mà tam giác \(SAD\) đều nên \(SA = S{\rm{D}}\)
\( \Rightarrow MQ = NP\left( 2 \right)\)
Từ (1) và (2) \( \Rightarrow MNPQ\) là hình thang cân.
b) Gọi \(I = MQ \cap NP\). Ta có:
\(\left. \begin{array}{l}\left( {SAB} \right) \cap \left( {SA{\rm{D}}} \right) = SI\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\\\left( {SC{\rm{D}}} \right) \cap \left( {ABCD} \right) = C{\rm{D}}\end{array} \right\} \Rightarrow SI\parallel AB\parallel C{\rm{D}}\)
\(SI\parallel N{\rm{D}},S{\rm{D}}\parallel NI \Rightarrow SIN{\rm{D}}\) là hình bình hành \( \Rightarrow S{\rm{D}} = NI\)
\(SI\parallel MA,S{\rm{A}}\parallel MI \Rightarrow SIMA\) là hình bình hành \( \Rightarrow S{\rm{A}} = MI\)
Xét tam giác \(IMN\) và tam giác \(SAD\) có: \(MN\parallel A{\rm{D,}}MI\parallel SA,NI\parallel S{\rm{D}},MN = A{\rm{D}}\)
tam giác \(IMN\) là tam giác đều cạnh \(a\).
\(\begin{array}{l}SI\parallel AB \Rightarrow \frac{{SI}}{{BM}} = \frac{{IQ}}{{QM}} \Leftrightarrow \frac{{SI}}{{BM + SI}} = \frac{{IQ}}{{QM + IQ}} \Leftrightarrow \frac{{SI}}{{BM + MA}} = \frac{{IQ}}{{QM + IQ}}\\ \Leftrightarrow \frac{{SI}}{{AB}} = \frac{{IQ}}{{MI}} \Leftrightarrow IQ = \frac{{SI.MI}}{{AB}} = \frac{{x.a}}{a} = x\end{array}\)
\({S_{IMN}} = \frac{{{a^2}\sqrt 3 }}{4},{S_{IPQ}} = \frac{{{x^2}\sqrt 3 }}{4} \Rightarrow {S_{MNPQ}} = {S_{IMN}} - {S_{IPQ}} = \frac{{{a^2}\sqrt 3 }}{4} - \frac{{{x^2}\sqrt 3 }}{4} = \frac{{\sqrt 3 }}{4}\left( {{a^2} - {x^2}} \right)\)
Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu tìm đạo hàm của các hàm số sau:
f(x) = x3 - 3x2 + 2x - 5
g(x) = (x2 + 1)(x - 2)
h(x) = sin(2x) + cos(x)
Để tìm đạo hàm của f(x), ta sử dụng quy tắc đạo hàm của tổng và hiệu, cũng như quy tắc đạo hàm của lũy thừa:
f'(x) = d/dx (x3) - d/dx (3x2) + d/dx (2x) - d/dx (5)
f'(x) = 3x2 - 6x + 2 - 0
Vậy, f'(x) = 3x2 - 6x + 2
Để tìm đạo hàm của g(x), ta sử dụng quy tắc đạo hàm của tích:
g'(x) = d/dx (x2 + 1) * (x - 2) + (x2 + 1) * d/dx (x - 2)
g'(x) = (2x) * (x - 2) + (x2 + 1) * (1)
g'(x) = 2x2 - 4x + x2 + 1
Vậy, g'(x) = 3x2 - 4x + 1
Để tìm đạo hàm của h(x), ta sử dụng quy tắc đạo hàm của tổng và quy tắc đạo hàm của hàm lượng giác:
h'(x) = d/dx (sin(2x)) + d/dx (cos(x))
h'(x) = cos(2x) * d/dx (2x) - sin(x)
h'(x) = cos(2x) * 2 - sin(x)
Vậy, h'(x) = 2cos(2x) - sin(x)
Nắm vững các quy tắc đạo hàm cơ bản: đạo hàm của tổng, hiệu, tích, thương, hàm hợp, hàm lượng giác.
Sử dụng đúng công thức đạo hàm của các hàm số đặc biệt.
Kiểm tra lại kết quả sau khi tính toán để tránh sai sót.
Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:
Tìm cực trị của hàm số.
Khảo sát sự biến thiên của hàm số.
Giải các bài toán tối ưu hóa.
Tính vận tốc và gia tốc trong vật lý.
Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, bạn có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 1 - Chân trời sáng tạo và các tài liệu tham khảo khác.
Hy vọng lời giải chi tiết và hướng dẫn này sẽ giúp bạn hiểu rõ hơn về Bài 10 trang 128 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin giải các bài tập tương tự.