Logo Header
  1. Môn Toán
  2. Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải bài tập Toán 11 một cách chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Cho hai điểm \(A,B\) nằm ngoài mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(d\) cắt \(\left( \alpha \right)\). Giả sử đường thẳng \(AB\) cắt \(\left( \alpha \right)\) tại điểm \(O\). Gọi \(A'\) và \(B'\) lần lượt là hình chiếu song song của \(A\) và \(B\) trên \(\left( \alpha \right)\) theo phương của đường thẳng \(d\). Ba điểm \(O,A',B'\) có thẳng hàng không? Vì sao? Chọn \(d\) sao cho:

Đề bài

Cho hai điểm \(A,B\) nằm ngoài mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(d\) cắt \(\left( \alpha \right)\). Giả sử đường thẳng \(AB\) cắt \(\left( \alpha \right)\) tại điểm \(O\). Gọi \(A'\) và \(B'\) lần lượt là hình chiếu song song của \(A\) và \(B\) trên \(\left( \alpha \right)\) theo phương của đường thẳng \(d\). Ba điểm \(O,A',B'\) có thẳng hàng không? Vì sao? Chọn \(d\) sao cho:

a) \(A'B' = AB\);

b) \(A'B' = 2AB\).

Phương pháp giải - Xem chi tiếtBài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Sử dụng tính chất của phép chiếu song song:

‒ Phép chiếu song song biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự ba điểm đó.

‒ Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng nằm trên hai đường thẳng song song hoặc trùng nhau.

Lời giải chi tiết

Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

Vì \(O \in \left( \alpha \right)\) nên \(O\) là hình chiếu của chính nó lên mặt phẳng \(\left( \alpha \right)\) theo phương \(d\).

Vì ba điểm \(O,A,B\) thẳng hàng nên ba điểm \(O,A',B'\) thẳng hàng.

\(AA'\parallel BB' \Rightarrow \frac{{AB}}{{OA}} = \frac{{A'B'}}{{OA'}} \Leftrightarrow \frac{{A'B'}}{{AB}} = \frac{{OA'}}{{OA}}\)

a) Để \(A'B' = AB\) thì \(OA' = OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = OA\).

b) Để \(A'B' = 2AB\) thì \(OA' = 2OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = 2OA\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Giải bài tập Toán 11 trên nền tảng toán học. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết

Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Bài tập này thường liên quan đến việc tìm đạo hàm, xét dấu đạo hàm, và xác định các điểm cực trị của hàm số.

Phần 1: Đề bài

Trước khi đi vào giải chi tiết, chúng ta cùng xem lại đề bài của Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo:

(Đề bài cụ thể sẽ được chèn vào đây - ví dụ: Cho hàm số y = f(x) = x^3 - 3x^2 + 2. Tìm đạo hàm f'(x) và xác định các điểm cực trị của hàm số.)

Phần 2: Giải chi tiết

Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:

  1. Bước 1: Tìm đạo hàm f'(x)
  2. Sử dụng quy tắc đạo hàm của tổng, hiệu và lũy thừa, ta có:

    f'(x) = 3x^2 - 6x

  3. Bước 2: Tìm các điểm cực trị
  4. Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

    3x^2 - 6x = 0

    3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Bước 3: Xét dấu đạo hàm để xác định loại cực trị
  6. Ta xét dấu f'(x) trên các khoảng:

    • Khoảng (-∞, 0): Chọn x = -1, f'(-1) = 3(-1)^2 - 6(-1) = 9 > 0, hàm số đồng biến.
    • Khoảng (0, 2): Chọn x = 1, f'(1) = 3(1)^2 - 6(1) = -3 < 0, hàm số nghịch biến.
    • Khoảng (2, +∞): Chọn x = 3, f'(3) = 3(3)^2 - 6(3) = 9 > 0, hàm số đồng biến.

    Từ bảng xét dấu, ta thấy:

    • Tại x = 0, hàm số đạt cực đại.
    • Tại x = 2, hàm số đạt cực tiểu.
  7. Bước 4: Tính giá trị cực đại, cực tiểu
  8. f(0) = (0)^3 - 3(0)^2 + 2 = 2

    f(2) = (2)^3 - 3(2)^2 + 2 = 8 - 12 + 2 = -2

    Vậy, hàm số đạt cực đại tại x = 0, giá trị cực đại là 2 và đạt cực tiểu tại x = 2, giá trị cực tiểu là -2.

Phần 3: Lưu ý khi giải bài tập về đạo hàm

  • Nắm vững các quy tắc đạo hàm cơ bản.
  • Chú ý xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Sử dụng đạo hàm để tìm các điểm cực trị, điểm uốn của hàm số.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Phần 4: Bài tập tương tự

Để củng cố kiến thức, các em có thể tham khảo thêm các bài tập tương tự sau:

  • Bài 5 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo
  • Bài 6 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo

Phần 5: Kết luận

Hy vọng với lời giải chi tiết này, các em học sinh đã hiểu rõ cách giải Bài 4 trang 126 SGK Toán 11 tập 1 - Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tài liệu, đề thi và đáp án Toán 11