Bài 5 trang 74 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Cấp số cho và cấp số nhân. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến cấp số, tính tổng của cấp số và ứng dụng vào thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình chóp cụt tứ giác đều có cạnh đáy lớn bằng (2a)
Đề bài
Cho hình chóp cụt tứ giác đều có cạnh đáy lớn bằng \(2a\), cạnh đáy nhỏ và đường nối tâm hai đáy bằng \(a\). Tính độ dài cạnh bên và đường cao của mỗi mặt bên.
Phương pháp giải - Xem chi tiết
Sử dụng định lí Pitago.
Lời giải chi tiết
Gọi \(O\) và \(O'\) lần lượt là tâm của hai đáy.
Kẻ \(B'H \bot B{\rm{D}}\left( {H \in B{\rm{D}}} \right),B'K \bot BC\left( {K \in BC} \right)\)
\(\begin{array}{l}B{\rm{D}} = \sqrt {A{B^2} + A{{\rm{D}}^2}} = 2a\sqrt 2 \Rightarrow BO = \frac{1}{2}B{\rm{D}} = a\sqrt 2 \\B'D' = \sqrt {A'B{'^2} + A'{\rm{D}}{{\rm{'}}^2}} = a\sqrt 2 \Rightarrow B'O' = \frac{1}{2}B'{\rm{D'}} = \frac{{a\sqrt 2 }}{2}\end{array}\)
\(OO'B'H\) là hình chữ nhật \( \Rightarrow OH = B'O' = \frac{{a\sqrt 2 }}{2},B'H = OO' = a\)
\( \Rightarrow BH = BO - OH = \frac{{a\sqrt 2 }}{2}\)
Tam giác \(BB'H\) vuông tại \(H\) có: \(BB' = \sqrt {B'{H^2} + B{H^2}} = \frac{{a\sqrt 6 }}{2}\)
\(BCC'B'\) là hình thang cân \( \Rightarrow BK = \frac{{BC - B'C'}}{2} = \frac{a}{2}\)
Tam giác \(BB'K\) vuông tại \(K\) có: \(B'K = \sqrt {BB{'^2} - B{K^2}} = \frac{{a\sqrt 5 }}{2}\)
Bài 5 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về cấp số cho và cấp số nhân. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài tập yêu cầu giải các bài toán liên quan đến:
Để giải bài tập này, học sinh cần nắm vững các công thức và định lý liên quan đến cấp số cho và cấp số nhân. Cụ thể:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tìm số hạng thứ 5 của cấp số cho có số hạng đầu u1 = 2 và công sai d = 3.
Áp dụng công thức un = u1 + (n-1)d, ta có:
u5 = 2 + (5-1) * 3 = 2 + 4 * 3 = 14
Để giải các bài tập tương tự, học sinh nên:
Cấp số có nhiều ứng dụng trong thực tế, ví dụ:
Để nắm vững kiến thức về cấp số, học sinh nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. giaitoan.edu.vn cung cấp nhiều bài tập luyện tập với lời giải chi tiết, giúp học sinh tự tin hơn trong quá trình học tập.
Bài 5 trang 74 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về cấp số cho và cấp số nhân. Việc nắm vững các công thức và định lý, cùng với việc luyện tập thường xuyên, sẽ giúp học sinh giải quyết các bài tập một cách hiệu quả và tự tin.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về bài tập này và đạt kết quả tốt trong môn Toán 11.