Logo Header
  1. Môn Toán
  2. Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 4 trang 85 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 4 trang 85 SGK Toán 11 tập 2, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.

Một con dốc có dạng hình lăng trụ đứng tam giác với kích thước như trong Hình 9.

Đề bài

Một con dốc có dạng hình lăng trụ đứng tam giác với kích thước như trong Hình 9.

a) Tính số đo góc giữa đường thẳng \(CA'\) và .

b) Tính số đo góc nhị diện cạnh \(CC'\).

Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtBài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo 2

‒ Cách tính góc giữa đường thẳng và mặt phẳng: Tính góc giữa đường thẳng đó và hình chiếu của nó lên mặt phẳng.

‒ Cách xác định góc nhị diện \(\left[ {{P_1},d,{Q_1}} \right]\)

Bước 1: Xác định \(c = \left( {{P_1}} \right) \cap \left( {{Q_1}} \right)\).

Bước 2: Tìm mặt phẳng \(\left( R \right) \supset c\).

Bước 3: Tìm \(p = \left( R \right) \cap \left( {{P_1}} \right),q = \left( R \right) \cap \left( {{Q_1}} \right),O = p \cap q,M \in p,N \in q\).

Khi đó \(\left[ {{P_1},d,{Q_1}} \right] = \widehat {MON}\).

Lời giải chi tiết

a) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}BB' \bot \left( {A'B'C'} \right) \Rightarrow BB' \bot A'B'\\A'B' \bot B'C'\end{array} \right\} \Rightarrow A'B' \bot \left( {CC'B'B} \right)\\ \Rightarrow \left( {CA',\left( {CC'B'B} \right)} \right) = \left( {CA',CB'} \right) = \widehat {A'CB'}\\B'C = \sqrt {BB{'^2} + B{C^2}} = 2\sqrt {61} ,A'B' = AB = 4\\\tan \widehat {A'CB'} = \frac{{A'B'}}{{B'C}} = \frac{2}{{\sqrt {61} }} \Rightarrow \widehat {A'CB'} \approx 14,{4^ \circ }\end{array}\)

Vậy \(\left( {CA',\left( {CC'B'B} \right)} \right) \approx 14,{4^ \circ }\)

b) \(CC' \bot \left( {ABC} \right) \Rightarrow CC' \bot AC,CC' \bot BC\)

Vậy \(\widehat {ACB}\) là góc nhị diện cạnh \(CC'\).

\(\tan \widehat {ACB} = \frac{{AB}}{{AC}} = \frac{1}{3} \Rightarrow \widehat {ACB} \approx 18,{4^ \circ }\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 85 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 4 trang 85 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến tốc độ thay đổi của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 4 yêu cầu học sinh giải các bài toán về đạo hàm, cụ thể là tính đạo hàm của hàm số, tìm điểm cực trị, và khảo sát hàm số. Các bài toán thường được trình bày dưới dạng các hàm số đơn giản, nhưng đòi hỏi học sinh phải áp dụng đúng các công thức và kỹ năng đã học.

Lời giải chi tiết

Để giải Bài 4 trang 85 SGK Toán 11 tập 2, học sinh cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần xét.
  2. Tính đạo hàm: Sử dụng các công thức đạo hàm cơ bản để tính đạo hàm cấp một của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là điểm cực trị.
  4. Khảo sát hàm số: Sử dụng đạo hàm cấp hai để xác định loại điểm cực trị (cực đại hoặc cực tiểu).
  5. Kết luận: Viết kết luận về điểm cực trị và các khoảng đồng biến, nghịch biến của hàm số.

Ví dụ minh họa

Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:

  • Đạo hàm cấp một: f'(x) = 3x2 - 6x
  • Giải phương trình f'(x) = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Đạo hàm cấp hai: f''(x) = 6x - 6
  • Xác định loại điểm cực trị:
    • f''(0) = -6 < 0 => x = 0 là điểm cực đại
    • f''(2) = 6 > 0 => x = 2 là điểm cực tiểu
  • Kết luận: Hàm số đạt cực đại tại x = 0 với giá trị là f(0) = 2 và đạt cực tiểu tại x = 2 với giá trị là f(2) = -2.

Lưu ý khi giải bài tập

Khi giải Bài 4 trang 85 SGK Toán 11 tập 2, học sinh cần lưu ý những điều sau:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Thực hiện các phép tính cẩn thận để tránh sai sót.
  • Kiểm tra lại kết quả sau khi giải xong.
  • Vận dụng linh hoạt các kiến thức đã học để giải quyết các bài toán tương tự.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm có rất nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính vận tốc và gia tốc: Trong vật lý, đạo hàm của quãng đường theo thời gian là vận tốc, và đạo hàm của vận tốc theo thời gian là gia tốc.
  • Tối ưu hóa: Trong kinh tế, đạo hàm được sử dụng để tìm giá trị tối ưu của các hàm số chi phí, lợi nhuận.
  • Dự báo: Trong thống kê, đạo hàm được sử dụng để dự báo xu hướng của các dữ liệu.

Tài liệu tham khảo

Để học tốt hơn về đạo hàm và giải Bài 4 trang 85 SGK Toán 11 tập 2, học sinh có thể tham khảo các tài liệu sau:

  • Sách giáo khoa Toán 11 tập 2 Chân trời sáng tạo
  • Sách bài tập Toán 11 tập 2 Chân trời sáng tạo
  • Các trang web học toán online uy tín như giaitoan.edu.vn

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 4 trang 85 SGK Toán 11 tập 2 và tự tin giải các bài tập tương tự. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 11