Logo Header
  1. Môn Toán
  2. Bài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 97 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 2 trang 97, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin giải các bài tập tương tự.

Trên đường đi từ Hà Nội về thăm Đền Hùng ở Phú Thọ, Binh, Minh và 5 bạn khác ngồi

Đề bài

Trên đường đi từ Hà Nội về thăm Đền Hùng ở Phú Thọ, Bình, Minh và 5 bạn khác ngồi vào 7 chiếc ghế trên một xe ô tô 7 chỗ. Khi xe quay lại Hà Nội, mỗi bạn lại chọn ngồi ngẫu nhiên một ghế. Tính xác suất của biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.

Phương pháp giải - Xem chi tiếtBài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

‒ Sử dụng công thức tính xác suất: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left(\Omega \right)}}\).

‒ Sử dụng quy tắc nhân xác suất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố \(A\) và \(B\). Khi đó: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết

Có \(7! = 5040\) cách sắp xếp 7 bạn ngồi vào 7 chiếc ghế \( \Rightarrow n\left( \Omega \right) = 5040\).

Gọi \(A\) là biến cố: “Bình vẫn ngồi đúng ghế cũ của mình”, \(B\) là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.

Vậy \(AB\) là biến cố “Cả Bình và Minh vẫn ngồi đúng ghế cũ của mình”;

\(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.

* Tính P(A):

Xếp chỗ cho Bình ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.

\( \Rightarrow n\left( A \right) = 1.720 = 720\)

\(\Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\).

* Tính P(B):

Xếp chỗ cho Minh ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.

\( \Rightarrow n\left( B \right) = 1.720 = 720\)

\(\Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left(\Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\).

* Tính P(AB):

Xếp chỗ cho cả Bình và Minh ngồi đúng ghế cũ của mình có 1 cách.

Xếp chỗ cho 5 bạn còn lại có \(5! = 120\) cách.

\( \Rightarrow n\left( {AB} \right) = 1.120 = 120 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{5040}} = \frac{1}{{42}}\).

* Tính P(A ∪ B):

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{7} + \frac{1}{7} - \frac{1}{{42}} = \frac{{11}}{{42}}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 2 trang 97 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 2 trang 97 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 2 yêu cầu học sinh tính đạo hàm của các hàm số được cho. Các hàm số này có thể bao gồm các hàm số đơn giản như đa thức, hàm lượng giác, hàm mũ, hàm logarit, hoặc các hàm số phức tạp hơn được tạo thành từ các hàm số đơn giản thông qua các phép toán cộng, trừ, nhân, chia, và hợp thành.

Phương pháp giải

Để giải bài tập này, học sinh cần nắm vững các quy tắc tính đạo hàm cơ bản, bao gồm:

  • Đạo hàm của hàm số lũy thừa: (xn)' = nxn-1
  • Đạo hàm của hàm số lượng giác: (sin x)' = cos x, (cos x)' = -sin x, (tan x)' = 1/cos2 x, ...
  • Đạo hàm của hàm số mũ: (ex)' = ex, (ax)' = axln a
  • Đạo hàm của hàm số logarit: (ln x)' = 1/x, (loga x)' = 1/(xln a)
  • Quy tắc đạo hàm của tổng, hiệu, tích, thương và hợp thành hàm số.

Lời giải chi tiết

Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = 2x3 + 3sin x - 5ex.

Áp dụng các quy tắc đạo hàm đã nêu ở trên, ta có:

f'(x) = (2x3)' + (3sin x)' - (5ex)'

f'(x) = 6x2 + 3cos x - 5ex

Các dạng bài tập tương tự

Ngoài bài tập cụ thể này, học sinh có thể gặp các bài tập tương tự với các hàm số khác nhau. Để giải quyết các bài tập này, học sinh cần:

  • Xác định đúng các hàm số thành phần và các phép toán được sử dụng.
  • Áp dụng đúng các quy tắc đạo hàm tương ứng.
  • Thực hiện các phép toán một cách cẩn thận để tránh sai sót.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác, bao gồm:

  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán tối ưu hóa.
  • Tính vận tốc và gia tốc trong vật lý.

Luyện tập thêm

Để nắm vững kiến thức về đạo hàm và ứng dụng của nó, học sinh nên luyện tập thêm các bài tập khác trong SGK và các tài liệu tham khảo. Ngoài ra, học sinh có thể tìm kiếm các bài giảng trực tuyến hoặc tham gia các khóa học luyện thi để được hướng dẫn chi tiết hơn.

Kết luận

Bài 2 trang 97 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Bằng cách nắm vững các quy tắc đạo hàm cơ bản và luyện tập thường xuyên, học sinh có thể tự tin giải quyết các bài tập tương tự và ứng dụng kiến thức này vào các lĩnh vực khác.

Hàm sốĐạo hàm
f(x) = x2f'(x) = 2x
f(x) = sin xf'(x) = cos x
f(x) = exf'(x) = ex

Tài liệu, đề thi và đáp án Toán 11