Bài 7 trang 41 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến phép biến hóa affine. Bài tập này đòi hỏi học sinh nắm vững kiến thức về vector, ma trận và các phép biến đổi hình học.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 7 trang 41, giúp các em học sinh hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán.
Trong Hình 10, ngọn đèn trên hải đăng H cách bờ biển yy' một khoảng HO = 1 km.
Đề bài
Trong Hình 10, ngọn đèn trên hải đăng H cách bờ biển yy' một khoảng HO = 1 km. Đèn xoay ngược chiều kim đồng hồ với tốc độ \(\frac{\pi }{{10}}\)rad/s và chiếu hai luồng ánh sáng về phía đối diện nhau. Khi đèn xoay, điểm M mà luồng ánh sáng của hải đăng rọi vào bờ biển chuyển dộng dọc theo bờ.
(Theo https://www.mnhs.org/splitrock/learn/technology)
a) Ban đầu luồng sáng trùng với đường thẳng HO. Viết hàm số biểu thị toạ độ \({y_M}\) của điểm M trên trục Oy theo thời gian t.
b) Ngôi nhà N nằm trên bờ biển với toạ độ \({y_N} = - 1\;\left( {km} \right).\) Xác định các thời điểm t mà đèn hải đăng chiếu vào ngôi nhà.
Phương pháp giải - Xem chi tiết
a, Dựa vào đề bài để viếthàm số biểu thị toạ độ \({y_M}\) .
b, Phương trình \(\tan x = m\)có nghiệm với mọi m.
Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) thoả mãn \(\tan \alpha = m\). Khi đó:
\(\tan {\rm{x}} = m \Leftrightarrow \tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)
Lời giải chi tiết
a) Sau t giây điểm M quét được một góc lượng giác có số đo là: \(\alpha = \frac{\pi }{{10}}t\) rad.
Xét tam giác HOM vuông tại O có:
\(MO = tan\alpha .1 = \tan \left( {\frac{\pi }{{10}}t} \right)\).
Vậy tọa độ \({y_M} = \tan \left( {\frac{\pi }{{10}}t} \right)\).
b) Xét \(\tan \left( {\frac{\pi }{{10}}t} \right) = - 1\)
\(\begin{array}{l} \Leftrightarrow \tan \left( {\frac{\pi }{{10}}t} \right) = \tan \left( { - \frac{\pi }{4}} \right)\\ \Leftrightarrow \frac{\pi }{{10}}t = - \frac{\pi }{4} + k\pi \\ \Leftrightarrow t = - \frac{5}{2} + 10k,k \in \mathbb{Z}.\end{array}\)
Vì \(t \ge 0\) nên tại các thời điểm \(t = - \frac{5}{2} + 10k,k \in \mathbb{Z},k \ge 1\) thì đèn hải đăng chiếu vào ngôi nhà.
Bài 7 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về phép biến hóa affine. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như vector, ma trận, và các phép biến đổi hình học.
Bài 7 yêu cầu học sinh xác định ma trận của một phép biến hóa affine dựa trên các thông tin cho trước, hoặc ngược lại, xác định phép biến hóa affine từ ma trận của nó. Bài tập cũng có thể yêu cầu học sinh tính toán ảnh của một điểm hoặc một đường thẳng qua phép biến hóa affine.
Để giải Bài 7 trang 41, học sinh có thể áp dụng các phương pháp sau:
Ví dụ 1: Cho phép biến hóa affine f: R2 → R2 có ma trận A = [[2, 1], [1, 3]] và phép tịnh tiến v = [[1], [2]]. Tính ảnh của điểm M(2, 3) qua phép biến hóa f.
Giải:
Ảnh của điểm M(2, 3) qua phép biến hóa f là điểm M'(x', y') được tính như sau:
[[x'], [y']] = A * [[2], [3]] + v = [[2, 1], [1, 3]] * [[2], [3]] + [[1], [2]] = [[7], [11]] + [[1], [2]] = [[8], [13]]
Vậy, M'(8, 13).
Để rèn luyện thêm kỹ năng giải Bài 7 trang 41, học sinh có thể làm thêm các bài tập tương tự trong SGK Toán 11 tập 1 - Chân trời sáng tạo, hoặc tìm kiếm các bài tập trực tuyến trên các trang web học toán uy tín.
Bài 7 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về phép biến hóa affine. Bằng cách nắm vững các khái niệm cơ bản, áp dụng các phương pháp giải phù hợp, và luyện tập thường xuyên, học sinh có thể giải quyết bài tập này một cách hiệu quả và đạt kết quả tốt trong môn Toán.
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ tự tin hơn khi đối mặt với Bài 7 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo.