Bài 11 trang 86 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến hàm số bậc hai, đồ thị hàm số và ứng dụng của hàm số trong thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 11 trang 86 SGK Toán 11 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {x + 4} }&{khi\,\,x \ge 0}\\{2\cos x}&{khi\,\,x < 0}\end{array}} \right.\).
Đề bài
Xét tính liên tục của hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\sqrt {x + 4} }&{khi\,\,x \ge 0}\\{2\cos x}&{khi\,\,x < 0}\end{array}} \right.\).
Phương pháp giải - Xem chi tiết
Bước 1: Tìm tập xác định.
Bước 2: Xét tính liên tục của hàm số \(f\left( x \right)\) trên từng khoảng xác định.
Bước 3: Xét tính liên tục của hàm số \(f\left( x \right)\) tại điểm \({x_0} = 0\).
Bước 4: Kết luận
Lời giải chi tiết
Hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\).
Trên khoảng \(\left( {0; + \infty } \right)\), hàm số \(f\left( x \right)\) là hàm căn thức xác định trên \(\left( {0; + \infty } \right)\) nên hàm số liên tục trên khoảng \(\left( {0; + \infty } \right)\).
Trên khoảng \(\left( { - \infty ;0} \right)\), hàm số \(f\left( x \right)\) là hàm lượng giác xác định trên \(\left( { - \infty ;0} \right)\) nên hàm số liên tục trên khoảng \(\left( { - \infty ;0} \right)\).
Vậy hàm số \(f\left( x \right)\) liên tục trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).
Ta có: \(f\left( 0 \right) = \sqrt {0 + 4} = 2\)
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt {x + 4} = \sqrt {0 + 4} = 2\)
\(\mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} 2\cos x = 2\cos 0 = 2\)
Vì \(\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = 2\) nên \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 2 = f\left( 0 \right)\).
Vậy hàm số liên tục tại điểm \(x = 0\).
Vậy hàm số liên tục trên \(\mathbb{R}\).
Bài 11 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và đồ thị. Dưới đây là giải chi tiết bài tập này:
Bài 11 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:
Ví dụ: Xét hàm số y = x2 - 4x + 3.
Trong quá trình ôn tập chương 1, học sinh thường gặp các dạng bài tập sau:
Để giải bài tập về hàm số và đồ thị hiệu quả, học sinh cần:
Để củng cố kiến thức, học sinh có thể tự giải thêm các bài tập sau:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải Bài 11 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo và các bài tập tương tự. Chúc các em học tốt!