Bài 2 trang 64 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài toán liên quan đến đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để tìm đạo hàm của hàm số và giải các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình vuông (ABCD). Gọi (H,K) lần lượt là trung điểm của (AB,AD).
Đề bài
Cho hình vuông \(ABCD\). Gọi \(H,K\) lần lượt là trung điểm của \(AB,AD\). Trên đường thẳng vuông góc với \(\left( {ABCD} \right)\) tại \(H\), lấy điểm \(S\). Chứng minh rằng:
a) \(AC \bot \left( {SHK} \right)\);
b) \(CK \bot \left( {SDH} \right)\).
Phương pháp giải - Xem chi tiết
Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.
Lời giải chi tiết
a) Ta có:
\(H\) là trung điểm của \(AB\)
\(K\) là trung điểm của \(AD\)
\( \Rightarrow HK\) là đường trung bình của \(\Delta ABD\)
\( \Rightarrow HK\parallel B{\rm{D}}\)
\(ABCD\) là hình vuông \( \Rightarrow AC \bot B{\rm{D}}\)
Ta có: \(\left\{ \begin{array}{l}AC \bot BD\\HK//BD\end{array} \right. \Rightarrow AC \bot HK\)
Ta có: \(\left\{ \begin{array}{l}AC \bot HK - cmt\\AC \bot SH\,(Do\,SH \bot (ABCD))\\HK,SH \subset (SHK);HK \cap SH\end{array} \right. \Rightarrow AC \bot (SHK)\)
b) Gọi \(I = CK \cap DH\).
Xét \(\Delta AH{\rm{D}}\) và \(\Delta DKC\) có:
\(\left. \begin{array}{l}AH = DK\\\widehat {HA{\rm{D}}} = \widehat {K{\rm{D}}C}\\A{\rm{D}} = C{\rm{D}}\end{array} \right\} \Rightarrow \Delta AH{\rm{D}} = \Delta DKC\left( {c.g.c} \right) \Rightarrow \widehat {A{\rm{D}}H} = \widehat {DCK}\)
Mà \(\widehat {DKC} + \widehat {DCK} = {90^ \circ }\)
\(\begin{array}{l} \Rightarrow \widehat {DKC} + \widehat {ADH} = {90^0} \Rightarrow \widehat {DKI} = {180^0} - (\widehat {DKC} + \widehat {ADH}) = {90^0}\\ \Rightarrow DH \bot CK\end{array}\)
Ta có: \(\left\{ \begin{array}{l}CK \bot DH - cmt\\CK \bot SH\,\,(Do\,SH \bot (ABCD))\\DH,SH \subset (SDH);DH \cap SH\end{array} \right. \Rightarrow CK \bot (SDH)\)
Bài 2 trang 64 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 2 yêu cầu học sinh tìm đạo hàm của các hàm số sau:
a) y = x3 - 3x2 + 2x - 5
Áp dụng công thức đạo hàm của tổng và hiệu, ta có:
y' = 3x2 - 6x + 2
b) y = (x2 + 1)(x - 2)
Áp dụng công thức đạo hàm của tích, ta có:
y' = (2x)(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
c) y = (2x + 1) / (x - 3)
Áp dụng công thức đạo hàm của thương, ta có:
y' = [(2)(x - 3) - (2x + 1)(1)] / (x - 3)2 = (2x - 6 - 2x - 1) / (x - 3)2 = -7 / (x - 3)2
d) y = sin(2x) + cos(x)
Áp dụng công thức đạo hàm của hàm lượng giác, ta có:
y' = 2cos(2x) - sin(x)
Để giải các bài tập tương tự, học sinh cần nắm vững các công thức đạo hàm cơ bản, bao gồm:
Ngoài ra, học sinh cần luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau và rèn luyện kỹ năng giải toán.
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Việc hiểu rõ về đạo hàm và ứng dụng của nó là rất quan trọng đối với học sinh lớp 11, vì nó là nền tảng cho các kiến thức toán học nâng cao hơn.
Bài 2 trang 64 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập cơ bản nhưng quan trọng, giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ tự tin hơn trong việc học tập và giải toán.