Logo Header
  1. Môn Toán
  2. Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 106 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến hàm số bậc hai, đồ thị hàm số và ứng dụng của hàm số trong thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 5 trang 106, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình chóp (S.ABCD) có đáy là hình bình hành, (AC) và (BD) cắt nhau tại (O). Gọi (I) là trung điểm của (SO). Mặt phẳng (left( {ICD} right)) cắt (SA,SB) lần lượt tại (M,N).

Đề bài

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành, \(AC\) và \(BD\) cắt nhau tại \(O\). Gọi \(I\) là trung điểm của \(SO\). Mặt phẳng \(\left( {ICD} \right)\) cắt \(SA,SB\) lần lượt tại \(M,N\).

a) Hãy nói cách xác định hai điểm \(M\) và \(N\). Cho \(AB = a\). Tính \(MN\) theo \(a\).

b) Trong mặt phẳng \(\left( {CDMN} \right)\), gọi \(K\) là giao điểm của \(CN\) và \(DM\). Chứng minh \(SK\parallel BC\parallel AD\).

Phương pháp giải - Xem chi tiếtBài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

a) – Để xác định hai điểm \(M\) và \(N\), ta sử dụng tính chất về giao tuyến của hai mặt phẳng và định lí 2 về giao tuyến của ba mặt phẳng.

– Để tính độ dài đoạn thẳng \(MN\), ta sử dụng định lí Medelaus và định lí Thales.

b) Áp dụng định lí 2 về giao tuyến của ba mặt phẳng.

Lời giải chi tiết

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

a) • Ta có:

\(\begin{array}{l}\left. \begin{array}{l}M \in \left( {IC{\rm{D}}} \right)\\M \in SA \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow M \in \left( {IC{\rm{D}}} \right) \cap \left( {SAC} \right)\\\left. \begin{array}{l}I \in \left( {IC{\rm{D}}} \right)\\I \in SO \subset \left( {SAC} \right)\end{array} \right\} \Rightarrow I \in \left( {IC{\rm{D}}} \right) \cap \left( {SAC} \right)\\C \in \left( {IC{\rm{D}}} \right) \cap \left( {SAC} \right)\end{array}\)

\( \Rightarrow M,I,C\) thẳng hàng.

Do đó \(M\) là giao điểm của \(IC\) và \(SA\).

• Ta có:

\(\begin{array}{l}\left. \begin{array}{l}N \in \left( {IC{\rm{D}}} \right)\\N \in SB \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow N \in \left( {IC{\rm{D}}} \right) \cap \left( {SB{\rm{D}}} \right)\\\left. \begin{array}{l}I \in \left( {IC{\rm{D}}} \right)\\I \in SO \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow I \in \left( {IC{\rm{D}}} \right) \cap \left( {SB{\rm{D}}} \right)\\D \in \left( {IC{\rm{D}}} \right) \cap \left( {SB{\rm{D}}} \right)\end{array}\)

\( \Rightarrow N,I,D\) thẳng hàng.

Do đó \(N\) là giao điểm của \(I{\rm{D}}\) và \(SB\).

• Ta có:

\(\begin{array}{l}AB = \left( {SAB} \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {IC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\MN = \left( {SAB} \right) \cap \left( {IC{\rm{D}}} \right)\\AB\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(AB\parallel C{\rm{D}}\parallel MN\).

Áp dụng định lí Medelaus cho tam giác \(SOA\) với cát tuyến \(CIM\), ta có:

\(\frac{{SM}}{{MA}}.\frac{{AC}}{{OC}}.\frac{{OI}}{{SI}} = 1 \Leftrightarrow \frac{{SM}}{{MA}}.2.1 = 1 \Leftrightarrow \frac{{SM}}{{MA}} = \frac{1}{2}\)

Xét tam giác \(SAB\) có \(MN\parallel AB\). Theo định lí Thales ta có:

\(\frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{1}{3} \Leftrightarrow MN = \frac{1}{3}AB = \frac{a}{3}\)

b) Ta có:

\(\begin{array}{l}BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\SK = \left( {SAD} \right) \cap \left( {SBC} \right)\\AD\parallel BC\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(SK\parallel BC\parallel A{\rm{D}}\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Học tốt Toán lớp 11 trên nền tảng học toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó. Dưới đây là giải chi tiết bài tập này:

Nội dung bài tập

Bài 5 yêu cầu học sinh thực hiện các nhiệm vụ sau:

  • Xác định các hệ số a, b, c của hàm số bậc hai.
  • Tìm tọa độ đỉnh của parabol.
  • Vẽ đồ thị hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của hàm số trong thực tế.

Giải chi tiết

Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:

  • Định nghĩa hàm số bậc hai.
  • Công thức tính tọa độ đỉnh của parabol.
  • Cách vẽ đồ thị hàm số.
  • Các tính chất của hàm số bậc hai (đồng biến, nghịch biến, cực trị).

Ví dụ: Xét hàm số y = x2 - 4x + 3.

  1. Xác định hệ số: a = 1, b = -4, c = 3.
  2. Tọa độ đỉnh: xđỉnh = -b / 2a = -(-4) / (2 * 1) = 2. yđỉnh = (2)2 - 4(2) + 3 = -1. Vậy tọa độ đỉnh là (2, -1).
  3. Vẽ đồ thị: Đồ thị là một parabol có đỉnh tại (2, -1) và mở lên trên.
  4. Khoảng đồng biến, nghịch biến: Hàm số nghịch biến trên khoảng (-∞, 2) và đồng biến trên khoảng (2, +∞).

Ứng dụng của hàm số bậc hai

Hàm số bậc hai có nhiều ứng dụng trong thực tế, ví dụ như:

  • Tính quỹ đạo của vật ném.
  • Tính diện tích của các hình học.
  • Mô tả sự tăng trưởng hoặc suy giảm của một đại lượng.

Ví dụ: Một vật được ném lên từ mặt đất với vận tốc ban đầu là 20 m/s. Quỹ đạo của vật có thể được mô tả bằng hàm số y = -5t2 + 20t, trong đó y là độ cao của vật tại thời điểm t (giây).

Lưu ý khi giải bài tập

Khi giải bài tập về hàm số bậc hai, học sinh cần lưu ý:

  • Xác định đúng các hệ số a, b, c.
  • Sử dụng đúng công thức tính tọa độ đỉnh.
  • Vẽ đồ thị chính xác.
  • Hiểu rõ các tính chất của hàm số.
  • Áp dụng kiến thức đã học để giải các bài toán thực tế.

Bài tập tương tự: Để củng cố kiến thức, học sinh có thể tự giải thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác.

Tổng kết

Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về hàm số bậc hai và ứng dụng của nó. Bằng cách nắm vững kiến thức và luyện tập thường xuyên, học sinh có thể tự tin giải các bài tập tương tự và đạt kết quả tốt trong môn Toán.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 5 trang 106 SGK Toán 11 tập 1 - Chân trời sáng tạo và có thể tự tin giải các bài tập tương tự. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 11