Chào mừng các em học sinh đến với lời giải chi tiết Bài 4 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình đại số lớp 11, tập trung vào các kiến thức về hàm số và đồ thị.
giaitoan.edu.vn cung cấp lời giải bài tập Toán 11 chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Nghiệm âm lớn nhất của phương trình lượng giác (cos2x = cosleft( {x + frac{pi }{3}} right)) là:
Đề bài
Nghiệm âm lớn nhất của phương trình lượng giác \(cos2x = cos\left( {x + \frac{\pi }{3}} \right)\) là:
\(\begin{array}{l}A. - \frac{\pi }{9}\\B. - \frac{{5\pi }}{3}\\C. - \frac{{7\pi }}{9}\\D. - \frac{{13\pi }}{9}\end{array}\)
Phương pháp giải - Xem chi tiết
Phương trình \({\rm{cosx}} = m\),
Khi \(\left| m \right| \le 1\)sẽ tồn tại duy nhất \(\alpha \in \left[ {0;\pi } \right]\) thoả mãn \({\rm{cos}}\alpha = m\). Khi đó:
\({\rm{cosx}} = m \Leftrightarrow {\rm{cosx}} = {\rm{cos}}\alpha \) \( \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = - \alpha + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\)
Lời giải chi tiết
Ta có:
\(\begin{array}{l}cos2x = cos\left( {x + \frac{\pi }{3}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = x + \frac{\pi }{3} + k2\pi \\2x = - x - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)
Với \(x = \frac{\pi }{3} + k2\pi \),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = – 1, khi đó \(x = \frac{\pi }{3} - 2\pi = \frac{{ - 5\pi }}{3}\)
Với \(x = - \frac{\pi }{9} + k\frac{{2\pi }}{3}\),\(k \in \mathbb{Z}\) đạt giá trị âm lớn nhất khi k = 0, khi đó \(x = x = - \frac{\pi }{9} + 0.\frac{{2\pi }}{3} = - \frac{\pi }{9}\)
Vậy nghiệm âm lớn nhất của phương trình đã cho là \( - \frac{\pi }{9}\). Đáp án: A
Bài 4 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai để xác định các yếu tố của parabol và vẽ đồ thị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Để giải bài tập này, chúng ta sẽ thực hiện các bước sau:
Ví dụ, xét hàm số y = x² - 4x + 3. Ta có a = 1, b = -4, c = 3. Khi đó:
Dựa vào các thông tin này, chúng ta có thể vẽ được đồ thị của hàm số y = x² - 4x + 3.
Để giải bài tập này một cách chính xác, các em cần chú ý:
Để củng cố kiến thức về hàm số bậc hai và đồ thị, các em có thể tự giải các bài tập sau:
Kết luận: Bài 4 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu rõ hơn về hàm số bậc hai và đồ thị. Bằng cách nắm vững các kiến thức cơ bản và thực hành giải các bài tập, các em sẽ tự tin hơn trong việc học tập môn Toán.