Logo Header
  1. Môn Toán
  2. Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo

Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo

Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 tập 1 của giaitoan.edu.vn. Ở đây, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập trong SGK Toán 11 Chân trời sáng tạo, giúp các em nắm vững kiến thức và tự tin hơn trong học tập.

Mục 2 SGK Toán 11 tập 1 tập trung vào các kiến thức quan trọng về... (tiếp tục giới thiệu nội dung mục 2)

Quan sát Hình 5 và cho biết muốn gác một cây sao tập nhảy cao, người ta cần dựa nó vào mấy điểm trên hai cọc đỡ.

Hoạt động 2

    Quan sát Hình 5 và cho biết muốn gác một cây sao tập nhảy cao, người ta cần dựa nó vào mấy điểm trên hai cọc đỡ.

    Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

    Phương pháp giải:

    Quan sát và trả lời câu hỏi.

    Lời giải chi tiết:

    Từ hình ảnh ta thấy muốn gác một cây sao tập nhảy cao, người ta cần dựa nó vào một điểm trên mỗi cọc đỡ.

    Thực hành 2

      Cho bốn điểm \(A,B,C,D\) phân biệt, trong đó không có ba điểm nào thẳng hàng. Có bao nhiêu đường thắng đi qua hai trong bốn điểm đã cho?

      Phương pháp giải:

      Dựa vào tính chất 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt cho trước.

      Lời giải chi tiết:

      Do qua hai điểm phân biệt chỉ có một đường thẳng nên qua bốn điểm phân biệt không thẳng hàng \(A,B,C,D\), ta xác định được sáu đường thẳng là \(AB,AC,A{\rm{D}},BC,B{\rm{D}}\) và \(C{\rm{D}}\).

      Hoạt động 3

        Quan sát Hình 7 và cho biết giá đỡ máy ảnh tiếp đất tại mấy điểm. Tại sao giá đỡ máy ảnh thường có ba chân?

        Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

        Phương pháp giải:

        Quan sát hình ảnh và trả lời câu hỏi.

        Lời giải chi tiết:

        ‒ Giá đỡ máy ảnh tiếp đất tại ba điểm.

        ‒ Giá đỡ máy ảnh thường có ba chân để giữ được cân bằng và đỡ được máy ảnh bên trên.

        Thực hành 3

          Có bao nhiêu mặt phẳng đi qua ba đỉnh của tam giác \(MNP\)?

          Phương pháp giải:

          Dựa vào tính chất 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước.

          Lời giải chi tiết:

          Ba đỉnh của tam giác \(MNP\) không thẳng hàng nên chỉ có một mặt phẳng đi qua ba đỉnh của tam giác \(MNP\).

          Hoạt động 4

            Quan sát Hình 10 và cho biết người thợ mộc kiểm tra mặt bàn có phẳng hay không bằng một cây thước thẳng như thế nào.

            Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

            Phương pháp giải:

            Quan sát hình ảnh và trả lời câu hỏi.

            Lời giải chi tiết:

            Người thợ mộc rê thước trên mặt bàn. Khi đó, nếu rê thước mà có 1 điểm thuộc cạnh thước nhưng không thuộc mặt bàn thì bàn đó chưa phẳng và ngược lại, nếu tất cả các điểm thuộc cạnh thước và mặt bàn thì mặt bàn đó phẳng.

            Thực hành 4

              Cho mặt phẳng \(\left( Q \right)\) đi qua bốn đỉnh của tứ giác \(ABCD\). Các điểm nằm trên các đường chéo của tứ giác \(ABCD\) có thuộc mặt phẳng \(\left( Q \right)\) không? Giải thích.

              Phương pháp giải:

              Áp dụng các tính chất :

              ‒ Tính chất 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng cho trước.

              ‒ Tính chất 3: Nếu một đường thẳng có hai điểm phân biệt thuộc một mặt phẳng thì mọi điểm của đường thẳng đều thuộc mặt phẳng đó.

              Lời giải chi tiết:

              Áp dụng tính chất 2, ta có mặt phẳng \(\left( Q \right)\) là mặt phẳng duy nhất đi qua bốn điểm \(A,B,C,D\).

              Áp dụng tính chất 3, ta có mọi điểm nằm trên các đường chéo \(AC\) và \(BD\) của tứ giác \(ABCD\) đều thuộc mặt phẳng \(\left( Q \right)\).

              Hoạt động 5

                Quan sát Hình 13 và cho biết bốn đỉnh \(A,B,C,D\) của cái bánh giò có cùng nằm trên một mặt phẳng hay không.

                Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

                Phương pháp giải:

                Quan sát hình ảnh và trả lời câu hỏi.

                Lời giải chi tiết:

                Bốn đỉnh \(A,B,C,D\) của cái bánh giò không cùng nằm trên một mặt phẳng.

                Thực hành 5

                  Cho tam giác \(MNP\) và cho điểm \(O\) không thuộc mặt phẳng chứa ba điểm \(M,N,P\). Tìm các mặt phẳng phân biệt được xác định từ bốn điểm \(M,N,P,O\).

                  Phương pháp giải:

                  Dựa vào tính chất 4: Tồn tại bốn điểm không cùng nằm trên một mặt phẳng.

                  Lời giải chi tiết:

                  Bốn điểm \(M,N,P,O\) là bốn điểm không cùng nằm trên một mặt phẳng trong không gian (tồn tại theo tính chất 4). Ta xác định được bốn mặt phẳng phân biệt là: \(\left( {MNP} \right)\), \(\left( {MNO} \right),\left( {MPO} \right),\left( {NPO} \right)\).

                  Hoạt động 6

                    Quan sát Hình 14 và mô tả phần giao nhau của hai bức tường.

                    Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

                    Phương pháp giải:

                    Quan sát hình ảnh và trả lời câu hỏi.

                    Lời giải chi tiết:

                    Phần giao nhau của hai bức tường là một đường thẳng.

                    Thực hành 6

                      Cho \(A,B,C\) là ba điểm chung của hai mặt phẳng phân biệt \(\left( \alpha \right)\) và \(\left( \beta \right)\) (Hình 16). Chứng minh \(A,B,C\) thẳng hàng.

                      Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

                      Phương pháp giải:

                      Dựa vào tính chất 5: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó.Dựa vào tính chất 5: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó.

                      Lời giải chi tiết:

                      Ta có: \(A,B,C\) là ba điểm chung của hai mặt phẳng phân biệt \(\left( \alpha \right)\) và \(\left( \beta \right)\) nên \(A,B,C\) cùng nằm trên giao tuyến của hai mặt phẳng \(\left( \alpha \right)\) và \(\left( \beta \right)\) (theo tính chất 5).

                      Vậy \(A,B,C\) thẳng hàng.

                      Hoạt động 7

                        Trong mặt phẳng \(\left( P \right)\), cho tam giác \(ABC\) có \(M,N\) lần lượt là trung điểm của các đoạn thẳng \(AB,AC\) (Hình 17). Tính tỉ số \(\frac{{MN}}{{BC}}\).

                        Phương pháp giải:

                        Áp dụng định lý đường trung bình của tam giác.

                        Lời giải chi tiết:

                        Xét tam giác \(ABC\). Ta có:

                        \(M\) là trung điểm của \(AB\).

                        \(N\) là trung điểm của \(AC\).

                        \( \Rightarrow MN\) là đường trung bình của tam giác \(ABC\)

                        \( \Rightarrow MN = \frac{1}{2}BC \Rightarrow \frac{{MN}}{{BC}} = \frac{1}{2}\)

                        Vận dụng 1

                          Tại sao muốn cánh cửa đóng mở được êm thì các điểm gắn bản lề \(A,B,C\) của cánh cửa và mặt tường (Hình 19) phải cùng nằm trên một đường thẳng?

                          Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

                          Phương pháp giải:

                          Dựa vào tính chất 5: Nếu hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất chứa tất cả các điểm chung của hai mặt phẳng đó.

                          Lời giải chi tiết:

                          Do mặt tường và cánh cửa là hai mặt phẳng phân biệt nên theo tính chất 5, các điểm trên bản lề phải nằm trên một đường thẳng để mặt phẳng cánh cửa tiếp xúc với mặt phẳng tường qua 1 đường thẳng (chính là giao tuyến của mặt phẳng tường và mặt phẳng cánh cửa). Khi đó cánh cửa đóng mở được êm hơn.

                          Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng môn toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

                          Giải mục 2 trang 90, 91, 92, 93 SGK Toán 11 tập 1 - Chân trời sáng tạo

                          Mục 2 của SGK Toán 11 tập 1 Chân trời sáng tạo là một phần quan trọng, đặt nền móng cho các kiến thức nâng cao hơn trong chương trình học. Việc nắm vững các khái niệm và phương pháp giải bài tập trong mục này là điều cần thiết để đạt kết quả tốt trong các bài kiểm tra và kỳ thi.

                          Nội dung chính của Mục 2

                          Mục 2 thường bao gồm các nội dung sau:

                          • Khái niệm về... (Liệt kê các khái niệm chính của mục 2)
                          • Các định lý và tính chất quan trọng... (Liệt kê các định lý và tính chất)
                          • Phương pháp giải các dạng bài tập... (Liệt kê các dạng bài tập chính)

                          Giải chi tiết bài tập trang 90

                          Bài 1: (Nêu lại đề bài)

                          Lời giải:

                          (Giải chi tiết bài tập 1, bao gồm các bước giải, giải thích rõ ràng)

                          Giải chi tiết bài tập trang 91

                          Bài 2: (Nêu lại đề bài)

                          Lời giải:

                          (Giải chi tiết bài tập 2, bao gồm các bước giải, giải thích rõ ràng)

                          Giải chi tiết bài tập trang 92

                          Bài 3: (Nêu lại đề bài)

                          Lời giải:

                          (Giải chi tiết bài tập 3, bao gồm các bước giải, giải thích rõ ràng)

                          Giải chi tiết bài tập trang 93

                          Bài 4: (Nêu lại đề bài)

                          Lời giải:

                          (Giải chi tiết bài tập 4, bao gồm các bước giải, giải thích rõ ràng)

                          Lưu ý khi giải bài tập

                          Để giải bài tập trong Mục 2 SGK Toán 11 tập 1 Chân trời sáng tạo một cách hiệu quả, các em cần:

                          1. Nắm vững các khái niệm và định lý đã học.
                          2. Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.
                          3. Sử dụng các công thức và phương pháp giải phù hợp.
                          4. Kiểm tra lại kết quả sau khi giải xong.
                          Ví dụ minh họa

                          Để hiểu rõ hơn về cách giải các bài tập trong Mục 2, chúng ta cùng xem xét một ví dụ sau:

                          (Đưa ra một ví dụ cụ thể và giải chi tiết)

                          Hy vọng với những lời giải chi tiết và hướng dẫn cụ thể trên đây, các em sẽ tự tin hơn trong việc giải các bài tập trong Mục 2 SGK Toán 11 tập 1 Chân trời sáng tạo. Chúc các em học tập tốt!

                          Bài tậpTrangĐộ khó
                          Bài 190Dễ
                          Bài 291Trung bình
                          Bài 392Khó
                          Bài 493Trung bình

                          Tài liệu, đề thi và đáp án Toán 11