Bài 4 trang 13 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến phép biến hóa affine. Bài tập này đòi hỏi học sinh nắm vững kiến thức về vector, ma trận và các phép biến đổi hình học.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 4 trang 13, giúp các em học sinh hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán.
Với một chỉ vàng, giả sử người thợ lành nghề có thể dát mỏng thành lá vàng rộng (1,{m^2}) và dày khoảng (1,{94.10^{ - 7}},m).
Đề bài
Với một chỉ vàng, giả sử người thợ lành nghề có thể dát mỏng thành lá vàng rộng \(1\,{m^2}\) và dày khoảng \(1,{94.10^{ - 7}}\,m\). Đồng xu 5.000 đồng dày \(2,{2.10^{ - 3}}\,m\). Cần chồng bao nhiêu lá vàng như trên để có độ dày bằng đồng xu loại 5000 đồng? Làm tròn kết quả đến chữ số hàng trăm.
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa luỹ thừa với số mũ nguyên, luỹ thừa với số mũ hữu tỉ.
Lời giải chi tiết
Để có độ dày bằng đồng xu loại 5000 đồng ta cần chồng bao nhiêu lá vàng như trên là:
\(\left( {2,{{2.10}^{ - 3}}} \right)\,:\left( {1,{{94.10}^{ - 7}}} \right) \approx 11300\) (lá vàng)
Bài 4 trang 13 SGK Toán 11 tập 2 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về phép biến hóa affine. Để giải bài tập này một cách hiệu quả, chúng ta cần hiểu rõ các khái niệm cơ bản và áp dụng đúng các công thức.
Trước khi đi vào giải bài tập, hãy cùng nhau ôn lại một số kiến thức lý thuyết quan trọng:
Nội dung bài tập: (Giả sử nội dung bài tập là: Cho đường thẳng d: 2x + y - 3 = 0 và phép biến hóa affine f(x, y) = (x', y') = (x + 2y, 2x - y). Tìm ảnh của đường thẳng d qua phép biến hóa f.)
Lời giải:
Vector AB' = (6 - 3, -3 - 1) = (3, -4)
Phương trình đường thẳng d' đi qua A'(3, 1) và có vector chỉ phương (3, -4) là:
x = 3 + 3t
y = 1 - 4t
Khử t, ta được phương trình đường thẳng d': 4x + 3y - 15 = 0
Kết luận: Ảnh của đường thẳng d qua phép biến hóa f là đường thẳng d' có phương trình 4x + 3y - 15 = 0.
Để hiểu sâu hơn về phép biến hóa affine, các em có thể tự giải các bài tập tương tự với các phép biến hóa và đường thẳng khác nhau. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải toán.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải Bài 4 trang 13 SGK Toán 11 tập 2 - Chân trời sáng tạo. Chúc các em học tập tốt!