Chào mừng các em học sinh đến với lời giải chi tiết Bài 6 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình đại số lớp 11, tập trung vào các kiến thức về hàm số và đồ thị.
giaitoan.edu.vn cung cấp lời giải bài tập Toán 11 chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức:
Đề bài
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức: \(h(t) = 29 + 3sin\frac{\pi }{{12}}(t - 9)\;\) với h tính bằng độ C và t là thời gian trong ngày tính bằng giờ. Nhiệt độ thấp nhất trong ngày là bao nhiêu độ C và vào lúc mấy giờ?
(Theo https://www.sciencedirect.com/science/article/abs/pii/0168192385900139)
A. \({32^o}C\), lúc 15 giờ
B. \({29^o}C\), lúc 9 giờ
C. \({26^o}C\), lúc 3 giờ
D. \({26^o}C\), lúc 0 giờ
Phương pháp giải - Xem chi tiết
Áp dụng tính chất \( - 1 \le \sin x\; \le 1\) và giải phương trình sin.
Lời giải chi tiết
\(\begin{array}{l} - 1 \le sin\frac{\pi }{{12}}(t - 9)\; \le 1\\ \Leftrightarrow - 3 \le 3sin\frac{\pi }{{12}}(t - 9)\; \le 3\\ \Leftrightarrow 26 \le 29 + 3sin\frac{\pi }{{12}}(t - 9)\; \le 32\\ \Leftrightarrow 26 \le h(t) \le 32\end{array}\)
Vâỵ nhiệt độ thấp nhất trong ngày là 26°C khi:
\(\begin{array}{l}29 + 3sin\frac{\pi }{{12}}(t - 9) = 26\\ \Leftrightarrow sin\frac{\pi }{{12}}(t - 9) = - 1\\ \Leftrightarrow \frac{\pi }{{12}}(t - 9) = - \frac{\pi }{2} + k2\pi \\ \Leftrightarrow t = 3 + 24k,k \in \mathbb{Z}.\end{array}\)
Do t là thời gian trong ngày tính bằng giờ nên \(0 \le t \le 24\). Suy ra: \(k = 0 \Rightarrow t = 3\).
Vì vậy vào thời điểm 3 giờ trong ngày thì nhiều độ thấp nhất của thành phố là 26°C.
Đáp án: C
Bài 6 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về hàm số bậc hai để xác định các yếu tố của parabol và vẽ đồ thị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như:
Để giải Bài 6 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo, chúng ta thực hiện theo các bước sau:
Giả sử hàm số được cho là y = x2 - 4x + 3. Ta thực hiện giải như sau:
Dựa trên các thông tin trên, ta có thể vẽ được đồ thị hàm số y = x2 - 4x + 3.
Để giải Bài 6 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo một cách chính xác và hiệu quả, các em cần:
Để củng cố kiến thức về hàm số bậc hai và rèn luyện kỹ năng giải bài tập, các em có thể tham khảo các bài tập tương tự sau:
Bài 6 trang 42 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp các em hiểu sâu hơn về hàm số bậc hai và ứng dụng của nó trong thực tế. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các em sẽ tự tin giải bài tập và đạt kết quả tốt trong môn Toán.