Chào mừng các em học sinh đến với chuyên mục giải bài tập Toán 11 của giaitoan.edu.vn. Trong bài viết này, chúng tôi sẽ cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 trang 45, 46 sách giáo khoa Toán 11 tập 1 chương trình Chân trời sáng tạo.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, rèn luyện kỹ năng giải toán và đạt kết quả tốt nhất trong học tập.
(begin{array}{l}u:{mathbb{N}^*} to mathbb{R}\ & ,,,n mapsto uleft( n right) = {n^2}end{array}) Tính (uleft( 1 right);uleft( 2 right);uleft( {50} right);uleft( {100} right)).
\(u:{\mathbb{N}^*} \to \mathbb{R}\)
\(n \mapsto {u(n)} = {n^2}\)
Tính \(u\left( 1 \right);u\left( 2 \right);u\left( {50} \right);u\left( {100} \right)\).
Phương pháp giải:
Thay giá trị của \(n\) vào biểu thức \(u\left( n \right)\).
Lời giải chi tiết:
\(\begin{array}{l}u\left( 1 \right) = {1^2} = 1\\u\left( 2 \right) = {2^2} = 4\\u\left( {50} \right) = {50^2} = 2500\\u\left( {100} \right) = {100^2} = 10000\end{array}\)
Cho hàm số:
\(v:\left\{ {1;2;3;4;5} \right\} \to \mathbb{R}\)
\(n \to {\rm{ }}v\left( n \right) = 2n\)
Tính \(v\left( 1 \right),v\left( 2 \right),v\left( 3 \right),v\left( 4 \right),v\left( 5 \right)\).
Phương pháp giải:
Thay giá trị của \(n\) vào biểu thức \(v\left( n \right)\).
Lời giải chi tiết:
\(\begin{array}{l}v\left( 1 \right) = 2.1 = 2\\v\left( 2 \right) = 2.2 = 4\\v\left( 3 \right) = 2.3 = 6\\v\left( 4 \right) = 2.4 = 8\\v\left( 5 \right) = 2.5 = 10\end{array}\)
Cho dãy số:
\(u:{\mathbb{N}^*} \to \mathbb{R}\)
\(n \mapsto {u_n} = {n^3}\)
a) Hãy cho biết dãy số trên là hữu hạn hay vô hạn.
b) Viết năm số hạng đầu tiên của dãy số đã cho.
Phương pháp giải:
a) Xét xem tập xác định của hàm số \(u\) là tập hợp nào.
b) Lần lượt thay giá trị \(n = 1,2,3,4,5\) vào biểu thức \({u_n}\).
Lời giải chi tiết:
a) Vì hàm số \(u\) xác định trên tập hợp các số nguyên dương \({\mathbb{N}^*}\) nên nó là một dãy số vô hạn.
b) Ta có:
\(\begin{array}{l}{u_1} = {1^3} = 1\\{u_2} = {2^3} = 8\\{u_3} = {3^3} = 27\\{u_4} = {4^3} = 64\\{u_5} = {5^3} = 125\end{array}\)
Cho 5 hình tròn theo thứ tự có bán kính 1; 2; 3; 4; 5.
a) Viết dãy số chỉ diện tích của 5 hình tròn này.
b) Tìm số hạng đầu và số hạng cuối của dãy số trên.
Phương pháp giải:
a) Áp dụng công thức tính diện tích hình tròn có bán kính \(n\) là \({S_n} = \pi {n^2}\) rồi lần lượt thay giá trị \(R = 1;2;3;4;5\).
b) Số hạng đầu: \({S_1}\); số hạng cuối: \({S_5}\).
Lời giải chi tiết:
a) Gọi \(\left( {{S_n}} \right)\) là dãy số chỉ diện tích của 5 hình tròn với \({S_n} = \pi {n^2}\). Ta có:
\(\begin{array}{l}{S_1} = \pi {.1^2} = \pi \\{S_2} = \pi {.2^2} = 4\pi \\{S_3} = \pi {.3^2} = 9\pi \\{S_4} = \pi {.4^2} = 16\pi \\{S_5} = \pi {.5^2} = 25\pi \end{array}\)
Vậy dãy số chỉ diện tích của 5 hình tròn là: \(\pi ;4\pi ;9\pi ;16\pi ;25\pi \).
b) Số hạng đầu: \({S_1} = \pi \); số hạng cuối: \({S_5} = 25\pi \).
Mục 1 của chương trình Toán 11 tập 1 Chân trời sáng tạo tập trung vào việc giới thiệu về giới hạn của hàm số. Đây là một khái niệm nền tảng quan trọng, mở đầu cho chương trình Giải tích. Việc hiểu rõ về giới hạn sẽ giúp học sinh tiếp cận các khái niệm phức tạp hơn như đạo hàm và tích phân một cách dễ dàng hơn.
Mục 1 bao gồm các nội dung chính sau:
Để giải tốt các bài tập trong Mục 1, học sinh cần nắm vững các kiến thức sau:
a) lim (x→2) (x^2 + 3x - 1)
Lời giải:
Áp dụng tính chất giới hạn của đa thức, ta có:
lim (x→2) (x^2 + 3x - 1) = 2^2 + 3*2 - 1 = 4 + 6 - 1 = 9
b) lim (x→-1) (x^3 - 2x + 5)
Lời giải:
Áp dụng tính chất giới hạn của đa thức, ta có:
lim (x→-1) (x^3 - 2x + 5) = (-1)^3 - 2*(-1) + 5 = -1 + 2 + 5 = 6
a) lim (x→3) (2x - 1)/(x + 2)
Lời giải:
Áp dụng tính chất giới hạn của phân thức, ta có:
lim (x→3) (2x - 1)/(x + 2) = (2*3 - 1)/(3 + 2) = (6 - 1)/5 = 5/5 = 1
b) lim (x→1) (x^2 - 1)/(x - 1)
Lời giải:
Ta có: (x^2 - 1)/(x - 1) = (x - 1)(x + 1)/(x - 1) = x + 1 (với x ≠ 1)
Do đó: lim (x→1) (x^2 - 1)/(x - 1) = lim (x→1) (x + 1) = 1 + 1 = 2
Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về nội dung và phương pháp giải các bài tập trong Mục 1 trang 45, 46 SGK Toán 11 tập 1 Chân trời sáng tạo. Chúc các em học tập tốt!