Logo Header
  1. Môn Toán
  2. Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình đại số lớp 11, tập trung vào các kiến thức về vectơ và ứng dụng trong hình học.

giaitoan.edu.vn cung cấp lời giải bài tập Toán 11 chính xác, dễ hiểu, giúp các em nắm vững kiến thức và tự tin làm bài tập.

Trong Hình 5, ba điểm M, N, P nằm ở đầu các cánh quạt của tua bin gió. Biết các cánh quạt dài 31m, độ cao của điểm M so với mặt đất là 30m, góc giữa các cánh quạt là (frac{{2pi }}{3})và số đo góc (OA, OM) là (alpha ).

Đề bài

Trong Hình 5, ba điểm M, N, P nằm ở đầu các cánh quạt của tua bin gió. Biết các cánh quạt dài 31m, độ cao của điểm M so với mặt đất là 30m, góc giữa các cánh quạt là \(\frac{{2\pi }}{3}\) và số đo góc (OA, OM) là \(\alpha \).

a) Tính sin\(\alpha \) và cos \(\alpha \).

b) Tính sin của các góc lượng giác (OA, ON) và (OA, OP) từ đó tính chiều cao của các điểm N và P so với mặt đất (theo đơn vị mét). Làm tròn kết quả đến hàng phần trăm.

Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtBài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

Dựa vào hình vẽ để tìm sin\(\alpha \)và cos \(\alpha \); sử dụng công thức cộng để tính sin của các góc lượng giác (OA, ON) và (OA, OP).

Lời giải chi tiết

Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo 3

a, Từ điểm M kẻ MH vuông góc với Ox, MK vuông góc với Oy.

Ta có: MH = 60 – 30 = 30 m.

Khi đó hoành độ điểm M là 30.

⇒ \(\;\sin \alpha {\rm{ }} = \;\frac{{MH}}{{OM}} = \;\frac{{30}}{{31}}\)

\( \Rightarrow \cos \alpha = \sqrt {1 - {{\left( {\frac{{30}}{{31}}} \right)}^2}} = \frac{{\sqrt {61} }}{{31}}\)

b, Vì các cánh quạt tạo thành 3 góc bằng nhau nên \(\widehat {MOP} = \widehat {NOP} = \widehat {MON} = {120^0}\)

\( \Rightarrow \widehat {AOP} = \widehat {MOP} - \widehat {MOA}\)

\( \Leftrightarrow \sin \widehat {AOP} = \sin \left( {\widehat {MOP} - \widehat {MOA}} \right) = \sin \widehat {MOP}.\cos \widehat {MOA} - \cos \widehat {MOP}.\sin \widehat {MOA}\)

\( = \sin \frac{{2\pi }}{3}.\cos \alpha - \cos \frac{{2\pi }}{3}.\sin \alpha \approx 0,7\)

Vì vậy chiều cao của điểm P so với mặt đất là:

31. \(\sin \widehat {AOP}\) + 60 = 31.0,7+ 60 \( \approx \) 81,76 m.

Ta có:

\(\cos \widehat {AOP} \approx \sqrt {1 - 0,{7^2}} = 0,71\)

\(\widehat {AON} = \widehat {AOP} + \widehat {PON}\)

\(\begin{array}{l} \Leftrightarrow \sin \widehat {AON} = \sin \left( {\widehat {AOP} + \widehat {PON}} \right)\\ \Leftrightarrow \sin \widehat {AON} = \sin \widehat {AOP}.\cos \widehat {PON} + \cos \widehat {AOP}.\sin \widehat {PON}\\ \Leftrightarrow \sin \widehat {AON} = 0,7.\cos \frac{{2\pi }}{3} + 0,71.\sin \frac{{2\pi }}{3} \approx 0,26\end{array}\)

\( \Rightarrow \sin \left( {OA,ON} \right) = \sin \widehat {AON} \approx 0,26\)

Vì vậy chiều cao của điểm N so với mặt đất là:

31. \(\sin \widehat {AON}\) + 60 = 31.0,26+ 60\( \approx \) 68,2 m.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Sách bài tập Toán 11 trên nền tảng đề thi toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết

Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về vectơ để giải quyết các bài toán liên quan đến hình học. Cụ thể, bài tập này thường tập trung vào việc chứng minh các đẳng thức vectơ, xác định vị trí tương đối của các điểm, và tính độ dài đoạn thẳng.

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Vectơ: Định nghĩa, các phép toán trên vectơ (cộng, trừ, nhân với một số).
  • Tích vô hướng của hai vectơ: Công thức tính, ứng dụng để tính góc giữa hai vectơ, kiểm tra vuông góc.
  • Hệ tọa độ: Biểu diễn vectơ trong hệ tọa độ, các phép toán trên vectơ trong hệ tọa độ.
  • Ứng dụng của vectơ trong hình học: Chứng minh các đẳng thức vectơ, xác định vị trí tương đối của các điểm, tính độ dài đoạn thẳng.

Phần 2: Giải chi tiết Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo

Để giải Bài 9 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo, chúng ta cần phân tích kỹ đề bài, xác định các vectơ liên quan, và áp dụng các kiến thức lý thuyết đã học. Dưới đây là hướng dẫn giải chi tiết:

Câu a:

(Nội dung câu a của bài tập)

Lời giải:

  1. Bước 1: Xác định các vectơ liên quan.
  2. Bước 2: Biểu diễn các vectơ theo các vectơ đã cho.
  3. Bước 3: Áp dụng các phép toán trên vectơ để chứng minh đẳng thức.
Câu b:

(Nội dung câu b của bài tập)

Lời giải:

  1. Bước 1: Xác định các vectơ liên quan.
  2. Bước 2: Sử dụng tích vô hướng để tính góc giữa hai vectơ.
  3. Bước 3: Kết luận về vị trí tương đối của các điểm.

Phần 3: Bài tập tương tự và luyện tập

Để củng cố kiến thức và kỹ năng giải bài tập về vectơ, các em có thể tham khảo các bài tập tương tự sau:

  • Bài tập 1: (Nội dung bài tập 1)
  • Bài tập 2: (Nội dung bài tập 2)
  • Bài tập 3: (Nội dung bài tập 3)

Phần 4: Lưu ý khi giải bài tập về vectơ

Khi giải bài tập về vectơ, các em cần lưu ý những điều sau:

  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.
  • Vẽ hình minh họa để dễ dàng hình dung bài toán.
  • Sử dụng các kiến thức lý thuyết một cách chính xác và linh hoạt.
  • Kiểm tra lại kết quả sau khi giải xong.

Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập này, các em sẽ nắm vững kiến thức về vectơ và tự tin giải các bài tập tương tự. Chúc các em học tập tốt!

STTNội dung
1Định nghĩa vectơ
2Các phép toán trên vectơ
3Tích vô hướng của hai vectơ
Bảng tóm tắt kiến thức

Tài liệu, đề thi và đáp án Toán 11