Logo Header
  1. Môn Toán
  2. Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo. Bài học này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng giải các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.

giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.

Cho hình bình hành \(ABCD\) và một điểm \(S\) không nằm trong mặt phẳng \(\left( {ABCD} \right)\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là một đường thẳng song song với đường thẳng nào sau đây?

Đề bài

Cho hình bình hành \(ABCD\) và một điểm \(S\) không nằm trong mặt phẳng \(\left( {ABCD} \right)\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là một đường thẳng song song với đường thẳng nào sau đây?

A. \(AB\).

B. \(AC\).

C. \(BC\).

D. \(SA\).

Phương pháp giải - Xem chi tiếtBài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Để tìm giao tuyến của hai mặt phẳng, tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.

Lời giải chi tiết

Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

Ta có:

\(\left. \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SC{\rm{D}}} \right)\\A{\rm{B}}\parallel C{\rm{D}}\\AB \subset \left( {SAB} \right)\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\}\)

\( \Rightarrow \)Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) là đường thẳng \(d\) đi qua \(S\), song song với \(AB\) và \(C{\rm{D}}\).

Chọn A.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục toán 11 trên nền tảng toán math. Bộ bài tập toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 5 yêu cầu học sinh giải các bài toán liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số và tìm cực trị của hàm số. Các bài tập thường có dạng:

  • Tìm đạo hàm f'(x) của hàm số f(x).
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Tìm cực đại, cực tiểu của hàm số.

Hướng dẫn giải chi tiết

Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:

  1. Khái niệm đạo hàm: Đạo hàm của hàm số f(x) tại điểm x là giới hạn của tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi độ biến thiên của đối số tiến tới 0.
  2. Các quy tắc tính đạo hàm: Quy tắc tính đạo hàm của tổng, hiệu, tích, thương của các hàm số, quy tắc đạo hàm của hàm hợp.
  3. Ứng dụng của đạo hàm: Sử dụng đạo hàm để xét tính đơn điệu của hàm số, tìm cực trị của hàm số.

Ví dụ minh họa

Ví dụ 1: Cho hàm số f(x) = x3 - 3x2 + 2. Tìm đạo hàm f'(x) và xét tính đơn điệu của hàm số.

Giải:

  • f'(x) = 3x2 - 6x
  • Để xét tính đơn điệu, ta giải phương trình f'(x) = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Xét dấu f'(x) trên các khoảng (-∞; 0), (0; 2), (2; +∞) để xác định khoảng đồng biến, nghịch biến.

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm và ứng dụng của đạo hàm, học sinh cần lưu ý:

  • Nắm vững các khái niệm và quy tắc tính đạo hàm.
  • Sử dụng đúng các công thức và phương pháp giải.
  • Kiểm tra lại kết quả sau khi giải.

Bài tập tương tự

Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm và ứng dụng của đạo hàm, học sinh có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 1 - Chân trời sáng tạo và các tài liệu tham khảo khác.

Tổng kết

Bài 5 trang 127 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải bài tập trên, các em học sinh sẽ hiểu rõ hơn về bài học và đạt kết quả tốt trong học tập.

Hàm sốĐạo hàmTính đơn điệu
f(x) = x2f'(x) = 2xĐồng biến trên (0; +∞)
g(x) = -x3g'(x) = -3x2Nghịch biến trên (-∞; 0)

Tài liệu, đề thi và đáp án Toán 11