Logo Header
  1. Môn Toán
  2. Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 2 trang 93 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp

Đề bài

Một hộp chứa 21 tấm thẻ cùng loại được đánh số từ 1 đến 21. Chọn ra ngẫu nhiên 1 thẻ từ hộp. Gọi \(A\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 2”, \(B\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 3”.

a) Hãy mô tả bằng lời biến cố \(AB\).

b) Hai biến cố \(A\) và \(B\) có độc lập không? Tại sao?

Phương pháp giải - Xem chi tiếtBài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

Sử dụng tính chất: Nếu hai biến cố \(A\) và \(B\) độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

Lời giải chi tiết

a) \(AB\) là biến cố “Số ghi trên thẻ được chọn chia hết cho 6”.

b) Lấy ngẫu nhiên 1 thẻ tử hộp có 21 cách \( \Rightarrow n\left( \Omega \right) = 21\)

\(\begin{array}{l}n\left( A \right) = 10 \Rightarrow P\left( A \right) = \frac{{10}}{{21}}\\n\left( B \right) = 7 \Rightarrow P\left( B \right) = \frac{7}{{21}} = \frac{1}{3}\\n\left( {AB} \right) = 3 \Rightarrow P\left( {AB} \right) = \frac{3}{{21}} = \frac{1}{7}\end{array}\)

Vì \(P\left( {AB} \right) \ne P\left( A \right)P\left( B \right)\) nên hai biến cố \(A\) và \(B\) không độc lập.

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 2 yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:

  • a) Tính đạo hàm f'(x).
  • b) Tìm các điểm cực trị của hàm số.
  • c) Xác định khoảng đồng biến, nghịch biến của hàm số.

Lời giải chi tiết

a) Tính đạo hàm f'(x)

Để tính đạo hàm f'(x), ta sử dụng quy tắc đạo hàm của hàm số đa thức:

f'(x) = 3x2 - 6x

b) Tìm các điểm cực trị của hàm số

Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2.

Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của đạo hàm bậc hai f''(x):

f''(x) = 6x - 6

Tại x = 0, f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.

Tại x = 2, f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.

Giá trị của hàm số tại các điểm cực trị là:

  • f(0) = 2
  • f(2) = 8 - 12 + 2 = -2

Vậy, hàm số có điểm cực đại là (0; 2) và điểm cực tiểu là (2; -2).

c) Xác định khoảng đồng biến, nghịch biến của hàm số

Dựa vào dấu của đạo hàm f'(x), ta có thể xác định khoảng đồng biến và nghịch biến của hàm số:

  • f'(x) > 0 khi x < 0 hoặc x > 2, vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
  • f'(x) < 0 khi 0 < x < 2, vậy hàm số nghịch biến trên khoảng (0; 2).

Kết luận

Thông qua việc giải bài 2 trang 93 SGK Toán 11 tập 2 – Chân trời sáng tạo, học sinh đã nắm vững kiến thức về đạo hàm, cách tìm điểm cực trị và xác định khoảng đồng biến, nghịch biến của hàm số. Đây là những kiến thức cơ bản và quan trọng trong chương trình học Toán 11.

Ứng dụng của đạo hàm trong thực tế

Đạo hàm không chỉ có ý nghĩa trong toán học mà còn có nhiều ứng dụng trong thực tế, như:

  • Vật lý: Tính vận tốc, gia tốc của vật chuyển động.
  • Kinh tế: Tính chi phí biên, doanh thu biên.
  • Kỹ thuật: Tối ưu hóa thiết kế, điều khiển hệ thống.

Luyện tập thêm

Để củng cố kiến thức về đạo hàm và ứng dụng của nó, học sinh nên luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Ngoài ra, có thể tham khảo các bài giảng trực tuyến và các video hướng dẫn giải bài tập trên giaitoan.edu.vn.

Tài liệu tham khảo

  • Sách giáo khoa Toán 11 tập 2 – Chân trời sáng tạo
  • Các bài giảng trực tuyến về đạo hàm
  • Các video hướng dẫn giải bài tập toán 11

Tài liệu, đề thi và đáp án Toán 11