Bài 2 trang 23 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc rèn luyện kỹ năng giải bài tập về giới hạn của hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để tính toán và chứng minh các giới hạn.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 2 trang 23 SGK Toán 11 tập 1, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tính (sin left( {alpha + frac{pi }{6}} right),cos left( {frac{pi }{4} - alpha } right)) biết (sin alpha = - frac{5}{{13}},pi < alpha < frac{{3pi }}{2})
Đề bài
Tính\(\sin \left( {\alpha + \frac{\pi }{6}} \right),\cos \left( {\frac{\pi }{4} - \alpha } \right)\) biết \(\sin \alpha = - \frac{5}{{13}},\pi < \alpha < \frac{{3\pi }}{2}\)
Phương pháp giải - Xem chi tiết
Áp dụng công thức: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\)
\(\begin{array}{l}\sin \left( {a + b} \right) = \sin a\cos b + \cos asinb\\\cos \left( {a - b} \right) = \cos a\cos b + \sin asinb\end{array}\)
Lời giải chi tiết
\(\cos \alpha = - \sqrt {1 - {{\left( { - \frac{5}{{13}}} \right)}^2}} = - \frac{{12}}{{13}}\) (vì \(\pi < \alpha < \frac{{3\pi }}{2}\))
\(\sin \left( {\alpha + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha sin\frac{\pi }{6} = \frac{{ - 12 + 5\sqrt 3 }}{{26}}\)
\(\cos \left( {\frac{\pi }{4} - \alpha } \right) = \cos \frac{\pi }{4}\cos \alpha + \sin \frac{\pi }{4}sin\alpha = \frac{{ - 17\sqrt 2 }}{{26}}\)
Bài 2 trang 23 SGK Toán 11 tập 1 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn của hàm số. Để giải bài tập này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về giới hạn, các định lý về giới hạn và các kỹ năng tính toán giới hạn.
Bài 2 yêu cầu học sinh tính các giới hạn sau:
Ta có thể phân tích tử thức thành nhân tử:
x^2 - 3x + 2 = (x - 1)(x - 2)
Do đó:
lim (x→2) (x^2 - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1
Ta có thể phân tích tử thức thành nhân tử:
x^3 + 1 = (x + 1)(x^2 - x + 1)
Do đó:
lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3
Để tính giới hạn này, ta có thể nhân cả tử và mẫu với liên hợp của tử thức:
lim (x→0) (√(x+1) - 1) / x = lim (x→0) [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)] = lim (x→0) (x + 1 - 1) / [x(√(x+1) + 1)] = lim (x→0) x / [x(√(x+1) + 1)] = lim (x→0) 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2
Kiến thức về giới hạn có ứng dụng rộng rãi trong nhiều lĩnh vực của toán học, đặc biệt là trong giải tích. Nó được sử dụng để định nghĩa đạo hàm, tích phân và các khái niệm quan trọng khác. Việc nắm vững kiến thức về giới hạn là nền tảng để học tốt các môn học cao cấp hơn.
Để rèn luyện thêm kỹ năng giải bài tập về giới hạn, các em có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 1 Chân trời sáng tạo và các tài liệu tham khảo khác.
Bài 2 trang 23 SGK Toán 11 tập 1 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn của hàm số. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin giải bài tập này và nắm vững kiến thức về giới hạn.