Bài 12 trang 62 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến hàm số bậc hai, đồ thị hàm số và ứng dụng của hàm số trong thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 12 trang 62 SGK Toán 11 tập 1, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm số hạng đầu ({u_1}) và công bội (q) của cấp số nhân (left( {{u_n}} right)), biết:
Đề bài
Tìm số hạng đầu \({u_1}\) và công bội \(q\) của cấp số nhân \(\left( {{u_n}} \right)\), biết:
a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right.\);
b) \(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).
Lời giải chi tiết
a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\{u_1}.{q^5} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\\left( {{u_1}.{q^4}} \right).q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\96q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 6\end{array} \right.\)
Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 6\) và công bội \(q = 2\).
b)
\(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} + {u_1}.q = 60\\{u_1}.{q^4} - {u_1}.{q^2} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.q\left( {{q^2} + 1} \right) = 60\left( 1 \right)\\{u_1}.{q^2}\left( {{q^2} - 1} \right) = 144\left( 2 \right)\end{array} \right.\)
Do \({u_1} = 0\) và \(q = 0\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:
\(\frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} = \frac{{144}}{{60}} \Leftrightarrow \frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} =\frac{{12}}{{5}} \Leftrightarrow 5q\left( {{q^2} - 1} \right) = 12\left( {{q^2} + 1} \right)\)
\( \Leftrightarrow 5{q^3} - 12q = 5{q^2} + 12 \Leftrightarrow 5{q^3} - 12{q^2} - 5q - 12 = 0 \Leftrightarrow q=3\) thế vào (1) ta được \({u_1}=2\).
Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và công bội \(q = 3\).
Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó. Dưới đây là giải chi tiết bài tập này:
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:
(Nội dung giải chi tiết từng câu hỏi của bài tập Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo sẽ được trình bày tại đây. Ví dụ:)
Câu a: Xác định hệ số a, b, c của hàm số y = 2x2 - 5x + 3.
Giải:
Hệ số a = 2, b = -5, c = 3.
Câu b: Tìm tọa độ đỉnh của parabol.
Giải:
x0 = -b/2a = -(-5)/(2*2) = 5/4
y0 = 2*(5/4)2 - 5*(5/4) + 3 = 2*(25/16) - 25/4 + 3 = 25/8 - 50/8 + 24/8 = -1/8
Vậy tọa độ đỉnh của parabol là I(5/4, -1/8).
Câu c: Vẽ đồ thị hàm số.
Giải:
(Hướng dẫn vẽ đồ thị hàm số dựa trên các thông tin đã tính toán ở các câu trước)
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:
Khi giải bài tập về hàm số bậc hai, các em cần lưu ý những điều sau:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em sẽ hiểu rõ hơn về Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin giải các bài tập tương tự. Chúc các em học tốt!