Logo Header
  1. Môn Toán
  2. Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 12 trang 62 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải các bài toán liên quan đến hàm số bậc hai, đồ thị hàm số và ứng dụng của hàm số trong thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 12 trang 62 SGK Toán 11 tập 1, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tìm số hạng đầu ({u_1}) và công bội (q) của cấp số nhân (left( {{u_n}} right)), biết:

Đề bài

Tìm số hạng đầu \({u_1}\) và công bội \(q\) của cấp số nhân \(\left( {{u_n}} \right)\), biết:

a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right.\);

b) \(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right.\).

Phương pháp giải - Xem chi tiếtBài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).

Lời giải chi tiết

a) \(\left\{ \begin{array}{l}{u_5} = 96\\{u_6} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\{u_1}.{q^5} = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\\left( {{u_1}.{q^4}} \right).q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^4} = 96\\96q = 192\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}q = 2\\{u_1} = 6\end{array} \right.\)

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 6\) và công bội \(q = 2\).

b)

\(\left\{ \begin{array}{l}{u_4} + {u_2} = 60\\{u_5} - {u_3} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} + {u_1}.q = 60\\{u_1}.{q^4} - {u_1}.{q^2} = 144\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.q\left( {{q^2} + 1} \right) = 60\left( 1 \right)\\{u_1}.{q^2}\left( {{q^2} - 1} \right) = 144\left( 2 \right)\end{array} \right.\)

Do \({u_1} = 0\) và \(q = 0\) không là nghiệm của hệ phương trình nên chia vế với vế của (2) cho (1) ta được:

\(\frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} = \frac{{144}}{{60}} \Leftrightarrow \frac{{q\left( {{q^2} - 1} \right)}}{{{q^2} + 1}} =\frac{{12}}{{5}} \Leftrightarrow 5q\left( {{q^2} - 1} \right) = 12\left( {{q^2} + 1} \right)\)

\( \Leftrightarrow 5{q^3} - 12q = 5{q^2} + 12 \Leftrightarrow 5{q^3} - 12{q^2} - 5q - 12 = 0 \Leftrightarrow q=3\) thế vào (1) ta được \({u_1}=2\).

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = 2\) và công bội \(q = 3\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Sách giáo khoa Toán 11 trên nền tảng toán math. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó. Dưới đây là giải chi tiết bài tập này:

Phần 1: Tóm tắt lý thuyết cần thiết

Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức lý thuyết quan trọng:

  • Hàm số bậc hai: Hàm số bậc hai có dạng y = ax2 + bx + c, với a ≠ 0.
  • Đồ thị hàm số bậc hai: Đồ thị hàm số bậc hai là một parabol.
  • Đỉnh của parabol: Tọa độ đỉnh của parabol là I(x0, y0), với x0 = -b/2a và y0 = f(x0).
  • Trục đối xứng của parabol: Trục đối xứng của parabol là đường thẳng x = x0.
  • Bảng biến thiên: Bảng biến thiên giúp ta xác định được khoảng đồng biến, nghịch biến và giá trị lớn nhất, nhỏ nhất của hàm số.

Phần 2: Giải chi tiết Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo

(Nội dung giải chi tiết từng câu hỏi của bài tập Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo sẽ được trình bày tại đây. Ví dụ:)

Câu a: Xác định hệ số a, b, c của hàm số y = 2x2 - 5x + 3.

Giải:

Hệ số a = 2, b = -5, c = 3.

Câu b: Tìm tọa độ đỉnh của parabol.

Giải:

x0 = -b/2a = -(-5)/(2*2) = 5/4

y0 = 2*(5/4)2 - 5*(5/4) + 3 = 2*(25/16) - 25/4 + 3 = 25/8 - 50/8 + 24/8 = -1/8

Vậy tọa độ đỉnh của parabol là I(5/4, -1/8).

Câu c: Vẽ đồ thị hàm số.

Giải:

(Hướng dẫn vẽ đồ thị hàm số dựa trên các thông tin đã tính toán ở các câu trước)

Phần 3: Bài tập tương tự và luyện tập

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:

  1. Xác định hệ số a, b, c của hàm số y = -x2 + 4x - 1.
  2. Tìm tọa độ đỉnh của parabol y = x2 - 2x + 5.
  3. Vẽ đồ thị hàm số y = 3x2 + 6x - 2.

Phần 4: Lưu ý khi giải bài tập về hàm số bậc hai

Khi giải bài tập về hàm số bậc hai, các em cần lưu ý những điều sau:

  • Nắm vững các công thức tính toán liên quan đến hàm số bậc hai.
  • Sử dụng bảng biến thiên để xác định được khoảng đồng biến, nghịch biến và giá trị lớn nhất, nhỏ nhất của hàm số.
  • Vẽ đồ thị hàm số một cách chính xác.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Hy vọng với lời giải chi tiết và hướng dẫn trên, các em sẽ hiểu rõ hơn về Bài 12 trang 62 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin giải các bài tập tương tự. Chúc các em học tốt!

Tài liệu, đề thi và đáp án Toán 11