Logo Header
  1. Môn Toán
  2. Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 6 trang 143 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 3: Hàm số lượng giác. Bài tập này yêu cầu học sinh vận dụng các kiến thức đã học về hàm số lượng giác để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 6 trang 143, giúp các em học sinh hiểu rõ bản chất của bài toán và rèn luyện kỹ năng giải toán.

Thống kê điểm trung bình môn Toán của một số học sinh lớp 11 được cho ở bảng sau:

Đề bài

Thống kê điểm trung bình môn Toán của một số học sinh lớp 11 được cho ở bảng sau:

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Hãy ước lượng số trung bình, tứ phân vị và mốt của mẫu số liệu ghép nhóm trên.

Phương pháp giải - Xem chi tiếtBài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 2

Sử dụng công thức tính số trung bình, mốt, tứ phân vị của mẫu số liệu ghép nhóm.

Lời giải chi tiết

Ta có:

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo 3

Tổng số học sinh: \(n = 8 + 10 + 16 + 24 + 13 + 7 + 4 = 82\)

• Điểm trung bình môn Toán của các học sinh lớp 11 trên là:

\(\bar x = \frac{{8.6,75 + 10.7,25 + 16.7,75 + 24.8,25 + 13.8,75 + 7.9,25 + 4.9,75}}{{82}} = 8,12\)

• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\left[ {8;8,5} \right)\).

Do đó: \({u_m} = 8;{n_{m - 1}} = 16;{n_m} = 24;{n_{m + 1}} = 13;{u_{m + 1}} - {u_m} = 8,5 - 8 = 0,5\)

Mốt của mẫu số liệu ghép nhóm là:

\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{24 - 16}}{{\left( {24 - 16} \right) + \left( {24 - 13} \right)}}.0,5 \approx 8,21\)

• Gọi \({x_1};{x_2};...;{x_{82}}\) là điểm của các học sinh lớp 11 được xếp theo thứ tự không giảm.

Ta có:

\(\begin{array}{l}{x_1},...,{x_8} \in \begin{array}{*{20}{c}}{\left[ {6,5;7} \right)}\end{array};{x_9},...,{x_{18}} \in \begin{array}{*{20}{c}}{\left[ {7;7,5} \right)}\end{array};{x_{19}},...,{x_{34}} \in \begin{array}{*{20}{c}}{\left[ {7,5;8} \right)}\end{array};{x_{35}},...,{x_{58}} \in \begin{array}{*{20}{c}}{\left[ {8;8,5} \right)}\end{array};\\{x_{59}},...,{x_{71}} \in \begin{array}{*{20}{c}}{\left[ {8,5;9} \right)}\end{array};{x_{72}},...,{x_{78}} \in \begin{array}{*{20}{c}}{\left[ {9;9,5} \right)}\end{array};{x_{79}},...,{x_{82}} \in \begin{array}{*{20}{c}}{\left[ {9,5;10} \right)}\end{array}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{41}} + {x_{42}}} \right)\)

Ta có: \(n = 82;{n_m} = 24;C = 8 + 10 + 16 = 34;{u_m} = 8;{u_{m + 1}} = 8,5\)

Do \({x_{41}},{x_{42}} \in \begin{array}{*{20}{l}}{\left[ {8;8,5} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{\frac{{82}}{2} - 34}}{{24}}.\left( {8,5 - 8} \right) \approx 8,15\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_{21}}\).

Ta có: \(n = 82;{n_m} = 16;C = 8 + 10 = 18;{u_m} = 7,5;{u_{m + 1}} = 8\)

Do \({x_{21}} \in \begin{array}{*{20}{l}}{\left[ {7,5;8} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 7,5 + \frac{{\frac{{82}}{4} - 18}}{{16}}.\left( {8 - 7,5} \right) \approx 7,58\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{62}}\).

Ta có: \(n = 82;{n_j} = 13;C = 8 + 10 + 16 + 24 = 58;{u_j} = 8,5;{u_{j + 1}} = 9\)

Do \({x_{62}} \in \begin{array}{*{20}{l}}{\left[ {8,5;9} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 8,5 + \frac{{\frac{{3.82}}{4} - 58}}{{13}}.\left( {9 - 8,5} \right) \approx 8,63\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng môn toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình ôn tập chương 3 về hàm số lượng giác. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về các hàm số lượng giác cơ bản (sin, cos, tan, cot), các phép biến đổi lượng giác, và các tính chất của hàm số để giải quyết các bài toán cụ thể.

Nội dung chính của Bài 6 trang 143

Bài 6 thường bao gồm các dạng bài tập sau:

  • Xác định tập xác định của hàm số lượng giác: Học sinh cần xác định được khoảng giá trị của x để hàm số có nghĩa, dựa trên các điều kiện của từng hàm số lượng giác.
  • Tìm tập giá trị của hàm số lượng giác: Xác định khoảng giá trị mà hàm số có thể đạt được.
  • Khảo sát sự biến thiên của hàm số lượng giác: Xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  • Giải phương trình lượng giác: Sử dụng các công thức lượng giác và các phương pháp giải phương trình để tìm nghiệm của phương trình.
  • Giải bất phương trình lượng giác: Sử dụng các tính chất của hàm số lượng giác và các phương pháp giải bất phương trình để tìm tập nghiệm của bất phương trình.

Hướng dẫn giải chi tiết Bài 6 trang 143

Để giải Bài 6 trang 143 một cách hiệu quả, học sinh cần:

  1. Nắm vững kiến thức lý thuyết: Hiểu rõ định nghĩa, tính chất, và các công thức lượng giác cơ bản.
  2. Phân tích đề bài: Đọc kỹ đề bài, xác định rõ yêu cầu của bài toán, và các dữ kiện đã cho.
  3. Lựa chọn phương pháp giải phù hợp: Dựa trên dạng bài tập và các dữ kiện đã cho, lựa chọn phương pháp giải phù hợp.
  4. Thực hiện các phép biến đổi toán học: Thực hiện các phép biến đổi toán học một cách chính xác và cẩn thận.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa giải Bài 6 trang 143 (Giả định một dạng bài tập cụ thể)

Ví dụ: Giải phương trình 2sin(x) - 1 = 0

Giải:

2sin(x) - 1 = 0

sin(x) = 1/2

x = π/6 + k2π hoặc x = 5π/6 + k2π (k ∈ Z)

Lưu ý khi giải Bài 6 trang 143

  • Luôn kiểm tra điều kiện xác định của hàm số lượng giác.
  • Sử dụng máy tính bỏ túi để tính toán các giá trị lượng giác một cách chính xác.
  • Rèn luyện kỹ năng giải toán thường xuyên để nâng cao khả năng giải quyết các bài toán tương tự.

Tài liệu tham khảo hữu ích

Ngoài SGK Toán 11 tập 1 - Chân trời sáng tạo, học sinh có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 11
  • Các trang web học toán online uy tín như giaitoan.edu.vn
  • Các video bài giảng Toán 11 trên YouTube

Kết luận

Bài 6 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số lượng giác. Bằng cách nắm vững kiến thức lý thuyết, phân tích đề bài, lựa chọn phương pháp giải phù hợp, và rèn luyện kỹ năng giải toán thường xuyên, học sinh có thể giải quyết bài tập này một cách hiệu quả.

Tài liệu, đề thi và đáp án Toán 11