Bài 3 trang 61 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 3 trang 61, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{{n + 2}}\). Phát biểu nào sau đây đúng?
Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{n + 1}}{{n + 2}}\). Phát biểu nào sau đây đúng?
A. Dãy số tăng và bị chặn.
B. Dãy số giảm và bị chặn.
C. Dãy số giảm và bị chặn dưới.
D. Dãy số giảm và bị chặn trên.
Phương pháp giải - Xem chi tiết
• Xét tính tăng giảm của dãy số:
Bước 1: Tìm \({u_{n + 1}}\).
Bước 2: Xét hiệu \({u_{n + 1}} - {u_n}\).
Bước 3: Kết luận:
– Nếu \({u_{n + 1}} - {u_n} > 0\) thì \({u_{n + 1}} > {u_n},\forall n \in {\mathbb{N}^*}\), vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
– Nếu \({u_{n + 1}} - {u_n} < 0\) thì \({u_{n + 1}} < {u_n},\forall n \in {\mathbb{N}^*}\), vậy dãy số \(\left( {{u_n}} \right)\) là dãy số giảm.
• Xét tính bị chặn của dãy số ta sử dụng tính chất của bất đẳng thức.
Lời giải chi tiết
• Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right) + 1}}{{\left( {n + 1} \right) + 2}} = \frac{{n + 1 + 1}}{{n + 1 + 2}} = \frac{{n + 2}}{{n + 3}}\)
Xét hiệu:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 2}}{{n + 3}} - \frac{{n + 1}}{{n + 2}} = \frac{{{{\left( {n + 2} \right)}^2} - \left( {n + 1} \right)\left( {n + 3} \right)}}{{\left( {n + 3} \right)\left( {n + 2} \right)}} = \frac{{\left( {{n^2} + 4n + 4} \right) - \left( {{n^2} + n + 3n + 3} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2} + 4n + 4 - {n^2} - n - 3n - 3}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{1}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)
Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.
• Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{\left( {n + 2} \right) - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\)
\(\forall n \in {\mathbb{N}^*}\) ta có:
\(n + 2 > 0 \Leftrightarrow \frac{1}{{n + 2}} > 0 \Leftrightarrow 1 - \frac{1}{{n + 2}} < 1 \Leftrightarrow {u_n} < 1\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.
\(n \ge 1 \Leftrightarrow n + 2 \ge 1 + 2 \Leftrightarrow n + 2 \ge 3 \Leftrightarrow \frac{1}{{n + 2}} \le \frac{1}{3} \Leftrightarrow 1 - \frac{1}{{n + 2}} \ge 1 - \frac{1}{3} \Leftrightarrow {u_n} \ge \frac{2}{3}\)
Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.
Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.
Chọn A.
Bài 3 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và đồ thị. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 3 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài tập này, chúng ta cần thực hiện các bước sau:
Giả sử hàm số là f(x) = x3 - 3x2 + 2x. Chúng ta sẽ thực hiện các bước trên để giải bài tập.
Bước 1: Tập xác định của hàm số là R (tập hợp tất cả các số thực).
Bước 2: Đạo hàm của hàm số là f'(x) = 3x2 - 6x + 2.
Bước 3: Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0. Phương trình này có hai nghiệm là x1 = (3 - √3)/3 và x2 = (3 + √3)/3. Đây là các điểm cực trị của hàm số.
Bước 4: Dựa vào tập xác định, đạo hàm và các điểm cực trị, ta có thể vẽ đồ thị của hàm số.
Bước 5: Nghiên cứu sự biến thiên của hàm số, ta thấy hàm số đồng biến trên khoảng (-∞, x1) và (x2, +∞), nghịch biến trên khoảng (x1, x2).
Khi giải bài tập về hàm số và đồ thị, cần chú ý các điểm sau:
Bài tập về hàm số và đồ thị có nhiều ứng dụng trong thực tế, chẳng hạn như:
Bài 3 trang 61 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và đồ thị. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin hơn khi giải bài tập này.
Khái niệm | Giải thích |
---|---|
Hàm số | Quy tắc tương ứng giữa mỗi giá trị của biến độc lập x với một giá trị duy nhất của biến phụ thuộc y. |
Đạo hàm | Tốc độ thay đổi của hàm số theo biến x. |
Điểm cực trị | Điểm mà tại đó đạo hàm của hàm số bằng 0 hoặc không tồn tại. |