Logo Header
  1. Môn Toán
  2. Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo

Bài 4 trang 41 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về hàm số và đồ thị để giải quyết các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các khái niệm về tập xác định, tập giá trị, tính đơn điệu và cực trị của hàm số.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 4 trang 41, giúp bạn hiểu rõ phương pháp giải và tự tin làm bài tập.

Giải các phương trình lượng giác sau:

Đề bài

Giải các phương trình lượng giác sau:

\(\begin{array}{l}a)\;cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1\\b)\;cot3x = - \frac{{\sqrt 3 }}{3}\end{array}\)

Phương pháp giải - Xem chi tiếtBài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo 1

Phương trình \(\cot x = m\)có nghiệm với mọi m.

Với mọi \(m \in \mathbb{R}\), tồn tại duy nhất \(\alpha \in \left( {0;\pi } \right)\) thoả mãn \(\cot \alpha = m\). Khi đó:

\(\cot {\rm{x}} = m \Leftrightarrow \cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi ,k \in \mathbb{Z}.\)

Lời giải chi tiết

a, Điều kiện xác định: \(\frac{1}{2}x + \frac{\pi }{4} \ne k\pi \Leftrightarrow x \ne - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}.\)

Ta có: \(cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = - 1 \Leftrightarrow cot\left( {\frac{1}{2}x + \frac{\pi }{4}} \right) = \cot \left( { - \frac{\pi }{4}} \right)\)

\( \Leftrightarrow \frac{1}{2}x + \frac{\pi }{4} = - \frac{\pi }{4} + k\pi \Leftrightarrow x = - \pi + k2\pi ,k \in \mathbb{Z}\,\,(TM).\)

Vậy \(x = - \pi + k2\pi ,k \in \mathbb{Z}\,\).

b, Điều kiện xác định: \(3x \ne k\pi \Leftrightarrow x \ne k\frac{\pi }{3},k \in \mathbb{Z}.\)

\(\;cot3x = - \frac{{\sqrt 3 }}{3} \Leftrightarrow cot3x = \cot \left( { - \frac{\pi }{3}} \right)\)

\( \Leftrightarrow 3x = - \frac{\pi }{3} + k\pi \Leftrightarrow x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\,(TM).\)

Vậy \(x = - \frac{\pi }{9} + k\frac{\pi }{3},k \in \mathbb{Z}\,\).

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục Bài tập Toán lớp 11 trên nền tảng đề thi toán. Bộ bài tập lý thuyết toán thpt được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số bậc hai và ứng dụng của nó trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài 4 yêu cầu học sinh xét hàm số f(x) = -x2 + 4x - 3 và thực hiện các yêu cầu sau:

  1. Xác định tập xác định của hàm số.
  2. Tìm tọa độ đỉnh của parabol.
  3. Tìm trục đối xứng của parabol.
  4. Xác định khoảng đồng biến, nghịch biến của hàm số.
  5. Vẽ đồ thị của hàm số.

Lời giải chi tiết

1. Tập xác định:

Hàm số f(x) = -x2 + 4x - 3 là một hàm số bậc hai, có tập xác định là tập số thực, tức là D = ℝ.

2. Tọa độ đỉnh của parabol:

Tọa độ đỉnh của parabol y = ax2 + bx + c là I(-b/2a, -Δ/4a), trong đó Δ = b2 - 4ac.

Trong trường hợp này, a = -1, b = 4, c = -3. Do đó:

  • -b/2a = -4/(2*(-1)) = 2
  • Δ = 42 - 4*(-1)*(-3) = 16 - 12 = 4
  • -Δ/4a = -4/(4*(-1)) = 1

Vậy tọa độ đỉnh của parabol là I(2, 1).

3. Trục đối xứng của parabol:

Trục đối xứng của parabol là đường thẳng x = -b/2a. Trong trường hợp này, trục đối xứng là x = 2.

4. Khoảng đồng biến, nghịch biến:

Vì a = -1 < 0, parabol có hướng mở xuống. Do đó:

  • Hàm số đồng biến trên khoảng (-∞, 2).
  • Hàm số nghịch biến trên khoảng (2, +∞).

5. Vẽ đồ thị của hàm số:

Để vẽ đồ thị của hàm số, ta cần xác định một số điểm thuộc đồ thị. Ví dụ:

  • Khi x = 0, y = -3.
  • Khi x = 1, y = 0.
  • Khi x = 3, y = 0.
  • Khi x = 4, y = -3.

Vẽ các điểm này trên hệ trục tọa độ và nối chúng lại bằng một đường cong parabol. Đồ thị của hàm số sẽ là một parabol có đỉnh I(2, 1) và hướng mở xuống.

Kết luận

Thông qua việc giải Bài 4 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo, học sinh đã nắm vững các kiến thức về hàm số bậc hai, bao gồm tập xác định, tọa độ đỉnh, trục đối xứng, khoảng đồng biến, nghịch biến và cách vẽ đồ thị. Việc hiểu rõ các khái niệm này là rất quan trọng để giải quyết các bài toán liên quan đến hàm số bậc hai trong các bài học tiếp theo.

Bài tập tương tự

Để củng cố kiến thức, bạn có thể làm thêm các bài tập tương tự sau:

  • Bài 5 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo
  • Bài 6 trang 41 SGK Toán 11 tập 1 - Chân trời sáng tạo

Tài liệu tham khảo

Ngoài SGK, bạn có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 11
  • Các trang web học toán online uy tín

Tài liệu, đề thi và đáp án Toán 11