Bài 5 trang 143 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến phép biến hình. Bài tập này giúp học sinh củng cố kiến thức về các phép biến hình cơ bản và ứng dụng chúng vào giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 5 trang 143, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tứ phân vị thứ ba của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?
Đề bài
Tứ phân vị thứ ba của mẫu số liệu trên gần nhất với giá trị nào trong các giá trị sau?
A. 10.
B. 11.
C. 12.
D. 13.
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính tứ phân vị thứ ba theo bảng tần số ghép nhóm.
Lời giải chi tiết
Gọi \({x_1};{x_2};...;{x_{20}}\) là doanh thu bán hàng của các ngày được xếp theo thứ tự không giảm.
Ta có:
\({x_1},{x_2} \in \begin{array}{*{20}{c}}{\left[ {5;7} \right)}\end{array};{x_3},...,{x_9} \in \begin{array}{*{20}{c}}{\left[ {7;9} \right)}\end{array};{x_{10}},...,{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array};{x_{17}},{x_{18}},{x_{19}} \in \begin{array}{*{20}{c}}{\left[ {11;13} \right)}\end{array};{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {13;15} \right)}\end{array}\)
Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right)\).
Ta có: \(n = 20;{n_j} = 7;C = 2 + 7 = 9;{u_j} = 9;{u_{j + 1}} = 11\)
Do \({x_{15}},{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {9;11} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:
\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 9 + \frac{{\frac{{3.20}}{4} - 9}}{7}.\left( {11 - 9} \right) \approx 10,7\)
Chọn B.
Bài 5 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh rèn luyện kỹ năng áp dụng các kiến thức về phép biến hình vào giải quyết các bài toán cụ thể. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 5 yêu cầu học sinh thực hiện các phép biến hình (tịnh tiến, quay, đối xứng trục, đối xứng tâm) lên một hình cho trước và xác định ảnh của hình đó sau phép biến hình. Bài tập thường bao gồm các hình hình học cơ bản như đường thẳng, đoạn thẳng, tam giác, hình vuông, hình tròn,...
Để giải bài tập này, học sinh cần nắm vững các kiến thức sau:
Ví dụ 1: Cho điểm A(1; 2) và vectơ tịnh tiến v = (3; -1). Tìm tọa độ điểm A' là ảnh của A qua phép tịnh tiến theo vectơ v.
Giải:
Áp dụng công thức tịnh tiến: A'(x' ; y') = A(x ; y) + v(a ; b) = (x + a ; y + b)
Ta có: A'(1 + 3 ; 2 - 1) = A'(4 ; 1)
Ví dụ 2: Cho điểm B(2; -3) và tâm quay O(0; 0), góc quay 90 độ. Tìm tọa độ điểm B' là ảnh của B qua phép quay tâm O, góc 90 độ.
Giải:
Áp dụng công thức quay: B'(x' ; y') = B(x ; y) * cos(α) - y * sin(α) ; x * sin(α) + y * cos(α)
Với α = 90 độ, cos(90) = 0 và sin(90) = 1
Ta có: B'(2 * 0 - (-3) * 1 ; 2 * 1 + (-3) * 0) = B'(3 ; 2)
Để củng cố kiến thức và kỹ năng giải bài tập về phép biến hình, các em học sinh có thể tự giải các bài tập sau:
Bài 5 trang 143 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu sâu hơn về các phép biến hình và ứng dụng của chúng. Bằng cách nắm vững kiến thức và luyện tập thường xuyên, các em học sinh sẽ tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.