Chào mừng bạn đến với bài giải Bài 5 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo trên giaitoan.edu.vn. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Bài 5 thuộc chương trình học Toán 11 tập 2, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Cho \(\alpha ,\beta \) là hai số thực với \(\alpha < \beta \). Khẳng định nào sau đây đúng?
Đề bài
Cho \(\alpha ,\beta \) là hai số thực với \(\alpha < \beta \). Khẳng định nào sau đây đúng?
A. \({\left( {0,3} \right)^\alpha } < {\left( {0,3} \right)^\beta }\).
B. \({\pi ^\alpha } \ge {\pi ^\beta }\).
C. \({\left( {\sqrt 2 } \right)^\alpha } < {\left( {\sqrt 2 } \right)^\beta }\).
D. \({\left( {\frac{1}{2}} \right)^\beta } > {\left( {\frac{1}{2}} \right)^\alpha }\).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hàm số mũ.
Lời giải chi tiết
A. Do \(0 < 0,3 < 1\) nên hàm số \(y = 0,{3^x}\) nghịch biến trên \(\mathbb{R}\).
Mà \(\alpha < \beta \) nên \({\left( {0,3} \right)^\alpha } > {\left( {0,3} \right)^\beta }\).
B. Do \(\pi > 1\) nên hàm số \(y = {\pi ^x}\) đồng biến trên \(\mathbb{R}\).
Mà \(\alpha < \beta \) nên \({\pi ^\alpha } < {\pi ^\beta }\).
C. Do \(\sqrt 2 > 1\) nên hàm số \(y = {\left( {\sqrt 2 } \right)^x}\) đồng biến trên \(\mathbb{R}\).
Mà \(\alpha < \beta \) nên \({\left( {\sqrt 2 } \right)^\alpha } < {\left( {\sqrt 2 } \right)^\beta }\).
D. Do \(0 < \frac{1}{2} < 1\) nên hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).
Mà \(\alpha < \beta \) nên \({\left( {\frac{1}{2}} \right)^\alpha } > {\left( {\frac{1}{2}} \right)^\beta } \Leftrightarrow {\left( {\frac{1}{2}} \right)^\beta } < {\left( {\frac{1}{2}} \right)^\alpha }\).
Chọn C.
Bài 5 trong SGK Toán 11 tập 2 Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến tính đạo hàm của hàm số và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải Bài 5 trang 34 SGK Toán 11 tập 2 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Ví dụ minh họa:
Giả sử hàm số cần xét là: f(x) = x3 - 3x2 + 2
Bước 1: Hàm số f(x) = x3 - 3x2 + 2
Bước 2: f'(x) = 3x2 - 6x
Bước 3: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
Bước 4:
x | -∞ | 0 | 2 | +∞ |
---|---|---|---|---|
f'(x) | + | - | + | |
f(x) | NB | ĐC | TC |
Bước 5: Hàm số đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.
Ngoài việc giải Bài 5 trang 34, bạn nên tìm hiểu thêm về các ứng dụng khác của đạo hàm trong thực tế, như:
Hy vọng với lời giải chi tiết và hướng dẫn này, bạn sẽ tự tin hơn khi giải Bài 5 trang 34 SGK Toán 11 tập 2 - Chân trời sáng tạo. Chúc bạn học tập tốt!