Bài 3 trang 81 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc giải quyết các bài toán liên quan đến đạo hàm của hàm số. Bài tập này giúp học sinh rèn luyện kỹ năng tính đạo hàm và ứng dụng đạo hàm để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 3 trang 81, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Cho hình chóp (S.ABCD) có đáy là hình vuông cạnh (a), (SA = SB = SC = SD = asqrt 2 ).
Đề bài
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \(SA = SB = SC = SD = a\sqrt 2 \). Gọi \(I,J\) lần lượt là trung điểm của \(AB\) và \(C{\rm{D}}\).
a) Chứng minh \(AB \bot \left( {SIJ} \right)\).
b) Tính khoảng cách giữa hai đường thẳng \(AB\) và \(SC\).
Phương pháp giải - Xem chi tiết
‒ Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.
‒ Cách tính khoảng cách giữa hai đường thẳng chéo nhau:
Cách 1: Dựng đường vuông góc chung.
Cách 2: Tính khoảng cách từ đường thẳng này đến một mặt phẳng song song với đường thẳng đó và chứa đường thẳng còn lại.
Lời giải chi tiết
a) Gọi \(O\) là tâm của đáy
\( \Rightarrow SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AB\)
\(I\) là trung điểm của \(AB\)
\(J\) là trung điểm của \(C{\rm{D}}\)
\( \Rightarrow IJ\) là đường trung bình của hình vuông \(ABCD\)
\(\left. \begin{array}{l} \Rightarrow IJ\parallel A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow IJ \bot AB\)
Ta có:
\(\left. \begin{array}{l}SO \bot AB\\IJ \bot AB\end{array} \right\} \Rightarrow AB \bot \left( {SIJ} \right)\)
b) Kẻ \(IH \bot SJ\left( {H \in SJ} \right),OK \bot SJ\left( {K \in SJ} \right) \Rightarrow IH\parallel OK\)
\(O\) là trung điểm của \(IJ \Rightarrow IH = 2{\rm{O}}K\)
Ta có:
\(\left. \begin{array}{l}AB\parallel C{\rm{D}}\\C{\rm{D}} \subset \left( {SC{\rm{D}}} \right)\end{array} \right\} \Rightarrow AB\parallel \left( {SC{\rm{D}}} \right) \Rightarrow d\left( {AB,SC} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right)\)
\(\begin{array}{l}\left. \begin{array}{l}\left. \begin{array}{l}AB \bot \left( {SIJ} \right)\\C{\rm{D}}\parallel AB\end{array} \right\} \Rightarrow C{\rm{D}} \bot \left( {SIJ} \right) \Rightarrow C{\rm{D}} \bot IH\\ & IH \bot SJ\end{array} \right\} \Rightarrow IH \bot \left( {SC{\rm{D}}} \right)\\ \Rightarrow d\left( {AB,C{\rm{D}}} \right) = d\left( {AB,\left( {SC{\rm{D}}} \right)} \right) = IH\end{array}\)
\(O\) là trung điểm của \(IJ\), \(IH\parallel {\rm{O}}K\)\( \Rightarrow IH = 2{\rm{O}}K\)
\(O\) là trung điểm của \(B{\rm{D}}\)
\(J\) là trung điểm của \(C{\rm{D}}\)
\( \Rightarrow OJ\) là đường trung bình của \(\Delta BCD\)
\( \Rightarrow OJ = \frac{1}{2}BC = \frac{a}{2}\)
\(\Delta ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}} = a\sqrt 2 \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)
\(\Delta SAO\) vuông tại \(O\)\( \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} = \frac{{a\sqrt 6 }}{2}\)
\(\Delta SOJ\) vuông tại \(O\) có đường cao \(OK\)
\( \Rightarrow OK = \frac{{SO.OJ}}{{\sqrt {S{O^2} + O{J^2}} }} = \frac{{a\sqrt {42} }}{{14}}\)
\( \Rightarrow d\left( {AB,C{\rm{D}}} \right) = IH = 2OK = \frac{{a\sqrt {42} }}{7}\)
Bài 3 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán cụ thể. Dưới đây là giải chi tiết và hướng dẫn giải bài tập này:
Bài 3 yêu cầu tính đạo hàm của các hàm số sau:
a) y = x3 - 3x2 + 2x - 5
b) y = (x2 + 1)(x - 2)
c) y = (2x + 1) / (x - 3)
d) y = sin(2x + 1)
Áp dụng công thức đạo hàm của tổng và hiệu, ta có:
y' = (x3)' - (3x2)' + (2x)' - (5)'
y' = 3x2 - 6x + 2
Áp dụng công thức đạo hàm của tích, ta có:
y' = (x2 + 1)'(x - 2) + (x2 + 1)(x - 2)'
y' = 2x(x - 2) + (x2 + 1)(1)
y' = 2x2 - 4x + x2 + 1
y' = 3x2 - 4x + 1
Áp dụng công thức đạo hàm của thương, ta có:
y' = [(2x + 1)'(x - 3) - (2x + 1)(x - 3)'] / (x - 3)2
y' = [2(x - 3) - (2x + 1)(1)] / (x - 3)2
y' = (2x - 6 - 2x - 1) / (x - 3)2
y' = -7 / (x - 3)2
Áp dụng công thức đạo hàm của hàm hợp, ta có:
y' = cos(2x + 1) * (2x + 1)'
y' = 2cos(2x + 1)
Nắm vững các công thức đạo hàm cơ bản của các hàm số thường gặp.
Áp dụng đúng các công thức đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
Kiểm tra lại kết quả sau khi tính đạo hàm.
Đạo hàm có nhiều ứng dụng quan trọng trong toán học và các lĩnh vực khác, bao gồm:
Tìm cực trị của hàm số.
Khảo sát sự biến thiên của hàm số.
Giải các bài toán tối ưu hóa.
Tính vận tốc và gia tốc trong vật lý.
Để rèn luyện thêm kỹ năng giải bài tập về đạo hàm, các em có thể tham khảo các bài tập tương tự trong SGK Toán 11 tập 2 – Chân trời sáng tạo và các tài liệu luyện tập khác.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 3 trang 81 SGK Toán 11 tập 2 – Chân trời sáng tạo và tự tin giải các bài tập tương tự.