Bài 3 trang 19 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc luyện tập các kiến thức về giới hạn của hàm số. Bài tập này giúp học sinh củng cố lý thuyết và rèn luyện kỹ năng giải toán.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 3 trang 19, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tính các giá trị lượng giác của góc α, nếu:
Đề bài
Tính các giá trị lượng giác của góc α, nếu:
a) \(\sin \alpha = \frac{5}{{13}}\) và \(\frac{\pi }{2} < \alpha < \pi \)
b) \(\cos \alpha = \frac{2}{5}\) và \(0 < \alpha < 90^\circ \)
c) \(\tan \alpha = \sqrt 3 \) và \(\pi < \alpha < \frac{{3\pi }}{2}\)
d) \(\cot \alpha = -\frac{1}{2}\) và \(270^\circ < \alpha < 360^\circ \)
Phương pháp giải - Xem chi tiết
Dựa vào hệ thức cơ bản của hàm lượng giác để tính
Lời giải chi tiết
a) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\left( {\frac{5}{{13}}} \right)^2} + {\cos ^2}\alpha = 1 \Rightarrow \cos \alpha = \pm \frac{{12}}{{13}}\)
Do \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \cos \alpha = \frac{-{12}}{{13}}\)\( \Rightarrow \left\{ \begin{array}{l}\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{-5}{{12}}\\\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{-{12}}{5}\end{array} \right.\)
b) Ta có: \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow {\left( {\frac{2}{5}} \right)^2} + {\sin ^2}\alpha = 1 \Rightarrow \sin \alpha = \pm \frac{{\sqrt {21} }}{5}\)
Do \(0 < \alpha < 90^\circ \Rightarrow \sin \alpha = \frac{{\sqrt {21} }}{5}\)\( \Rightarrow \left\{ \begin{array}{l}\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\sqrt {21} }}{2}\\\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{2\sqrt {21} }}{{21}}\end{array} \right.\)
c) Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow 1 + {\left( {\sqrt 3 } \right)^2} = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow \cos \alpha = \pm \frac{1}{2}\)
Do \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \cos \alpha = \frac{-1}{2}\) \( \Rightarrow \left\{ \begin{array}{l}\cot \alpha .\tan \alpha = 1\\\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\cot \alpha = \frac{{\sqrt 3 }}{3}\\\sin \alpha = \frac{{-\sqrt 3 }}{2}\end{array} \right.\)
d) Ta có: \(1 + {\cot ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow 1 + {\left( -{\frac{1}{2}} \right)^2} = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow \sin \alpha = \pm \frac{{2\sqrt 5 }}{5}\)
Do \(270^\circ < \alpha < 360^\circ \Rightarrow \sin \alpha = \frac{{-2\sqrt 5 }}{5}.\)
Ta có: \(\cot \alpha = -\frac{1}{2} \Rightarrow \tan \alpha = \frac{1}{{\cot \alpha }} = -2\)
Lại có:
\(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} \Leftrightarrow 1 + 4 = \frac{1}{{{{\cos }^2}\alpha }}\)\( \Leftrightarrow {\cos ^2}\alpha = \frac{1}{5} \Leftrightarrow \cos \alpha = \pm \frac{{\sqrt 5 }}{5}\)
Do \({270^o} < \alpha < {360^o} \Rightarrow \cos \alpha > 0 \Rightarrow \cos \alpha = \frac{{\sqrt 5 }}{5}\)
Bài 3 trang 19 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh làm quen và vận dụng kiến thức về giới hạn của hàm số. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 3 yêu cầu học sinh tính các giới hạn sau:
a) lim (x→2) (x² - 3x + 2) / (x - 2)
Ta có thể phân tích tử thức thành (x - 1)(x - 2). Khi đó:
lim (x→2) (x² - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1
b) lim (x→-1) (x³ + 1) / (x + 1)
Ta có thể phân tích tử thức thành (x + 1)(x² - x + 1). Khi đó:
lim (x→-1) (x³ + 1) / (x + 1) = lim (x→-1) (x + 1)(x² - x + 1) / (x + 1) = lim (x→-1) (x² - x + 1) = (-1)² - (-1) + 1 = 1 + 1 + 1 = 3
c) lim (x→0) (√(x+1) - 1) / x
Để tính giới hạn này, ta có thể nhân cả tử và mẫu với liên hợp của tử thức là (√(x+1) + 1):
lim (x→0) (√(x+1) - 1) / x = lim (x→0) [(√(x+1) - 1)(√(x+1) + 1)] / [x(√(x+1) + 1)] = lim (x→0) (x + 1 - 1) / [x(√(x+1) + 1)] = lim (x→0) x / [x(√(x+1) + 1)] = lim (x→0) 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2
Khi giải các bài tập về giới hạn, bạn cần chú ý các kỹ năng sau:
Hãy xét giới hạn lim (x→3) (x² - 9) / (x - 3). Ta có thể phân tích tử thức thành (x - 3)(x + 3). Khi đó:
lim (x→3) (x² - 9) / (x - 3) = lim (x→3) (x - 3)(x + 3) / (x - 3) = lim (x→3) (x + 3) = 3 + 3 = 6
Bài 3 trang 19 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng tính giới hạn của hàm số. Việc nắm vững các kỹ năng và công thức giới hạn cơ bản sẽ giúp bạn giải quyết các bài tập tương tự một cách dễ dàng và hiệu quả.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ hiểu rõ hơn về Bài 3 trang 19 SGK Toán 11 tập 1 - Chân trời sáng tạo và tự tin hơn trong quá trình học tập.