Chào mừng các em học sinh đến với lời giải chi tiết Bài 4 trang 42 SGK Toán 11 tập 2 - Chân trời sáng tạo. Bài học này thuộc chương trình Toán 11, tập trung vào các kiến thức về phép biến hình.
giaitoan.edu.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Một chuyển động thẳng xác định bởi phương trình \(s\left( t \right) = 4{t^3} + 6t + 2\)
Đề bài
Một chuyển động thẳng xác định bởi phương trình \(s\left( t \right) = 4{t^3} + 6t + 2\), trong đó \(s\) tính bằng mét và \(t\) là thời gian tính bằng giây. Tính vận tốc tức thời của chuyển động tại \(t = 2\).
Phương pháp giải - Xem chi tiết
Vận tốc tức thời của chuyển động tại thời điểm \({t_0}\) là: \(v\left( {{t_0}} \right) = s'\left( {{t_0}} \right)\)
Lời giải chi tiết
Vận tốc tức thời của chuyển động tại \(t = 2\) là:
\(\begin{array}{l}v\left( 2 \right) = s'\left( 2 \right) = \mathop {\lim }\limits_{t \to 2} \frac{{s\left( t \right) - s\left( 2 \right)}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{\left( {4{t^3} + 6t + 2} \right) - \left( {{{4.2}^3} + 6.2 + 2} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t + 2 - 46}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{4{t^3} + 6t - 44}}{{t - 2}} = \mathop {\lim }\limits_{t \to 2} \frac{{2\left( {t - 2} \right)\left( {2{t^2} + 4t + 11} \right)}}{{t - 2}}\\ = \mathop {\lim }\limits_{t \to 2} 2\left( {2{t^2} + 4t + 11} \right) = 2\left( {{{2.2}^2} + 4.2 + 11} \right) = 54\end{array}\)
Vậy vận tốc tức thời của chuyển động lúc \(t = 2\) là: \(v\left( 2 \right) = 54\left( {m/s} \right)\)
Bài 4 trang 42 SGK Toán 11 tập 2 - Chân trời sáng tạo yêu cầu học sinh vận dụng kiến thức về phép biến hình, cụ thể là phép tịnh tiến, phép quay, phép đối xứng trục và phép đối xứng tâm để giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết từng phần của bài tập này:
Để thực hiện phép tịnh tiến, ta cần xác định vectơ tịnh tiến. Trong bài toán này, vectơ tịnh tiến được cho trước. Học sinh cần hiểu rõ cách áp dụng công thức tịnh tiến để tìm tọa độ điểm ảnh sau khi tịnh tiến.
Phép quay quanh một điểm O với góc quay α. Để giải bài toán này, học sinh cần nắm vững công thức quay điểm quanh gốc tọa độ. Việc xác định đúng tâm quay và góc quay là yếu tố then chốt.
Phép đối xứng trục d là phép biến hình biến mỗi điểm M thành điểm M' sao cho d là đường trung trực của đoạn thẳng MM'. Để tìm ảnh của một điểm qua phép đối xứng trục, ta cần tìm giao điểm của đường thẳng vuông góc với trục d và đi qua M với chính trục d đó.
Phép đối xứng tâm O là phép biến hình biến mỗi điểm M thành điểm M' sao cho O là trung điểm của đoạn thẳng MM'. Công thức đơn giản để tìm ảnh của một điểm qua phép đối xứng tâm là:
x' = 2*xO - x, y' = 2*yO - y (với O(xO, yO) là tâm đối xứng).
Phép biến hình có ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống và khoa học, như:
Để củng cố kiến thức về phép biến hình, các em có thể tham khảo thêm các bài tập tương tự trong SGK Toán 11 tập 2 và các tài liệu luyện tập khác. Việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Bài 4 trang 42 SGK Toán 11 tập 2 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về các phép biến hình và ứng dụng của chúng. Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ giải bài tập này một cách dễ dàng và hiệu quả. Chúc các em học tốt!