Bài 6 trang 24 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc ôn tập chương 1: Hàm số và đồ thị. Bài tập này yêu cầu học sinh vận dụng kiến thức về các loại hàm số, tính đơn điệu, cực trị và ứng dụng để giải quyết các bài toán cụ thể.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 6 trang 24 SGK Toán 11 tập 1, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chứng minh rằng tam giác ABC, ta có (sin A = sin B.cos C + sin C.cos B)
Đề bài
Chứng minh rằng tam giác ABC, ta có \(\sin A = \sin B.\cos C + \sin C.\cos B\)
Phương pháp giải - Xem chi tiết
Sử dụng định lý tổng 3 góc trong một tam giác bằng 1800 và áp dụng công thức cộng.
Lời giải chi tiết
Ta có: \(A + B + C = {180^0}\) (tổng 3 góc trong một tam giác)
\(\begin{array}{l} \Rightarrow A = {180^0} - \left( {B + C} \right)\\ \Leftrightarrow \sin A = \sin \left( {{{180}^0} - \left( {B + C} \right)} \right)\\ \Leftrightarrow \sin A = \sin \left( {B + C} \right) = \sin B.\cos C + \sin C.\cos B\end{array}\)
Bài 6 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về hàm số và đồ thị. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 6 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải Bài 6 trang 24 SGK Toán 11 tập 1, chúng ta cần thực hiện các bước sau:
Giả sử hàm số được xét là f(x) = x2 + 2x + 1. Ta sẽ thực hiện các bước như sau:
Khi giải Bài 6 trang 24 SGK Toán 11 tập 1, học sinh cần lưu ý những điều sau:
Bài 6 trang 24 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về hàm số và đồ thị. Hy vọng với lời giải chi tiết và hướng dẫn trên, các em học sinh sẽ tự tin giải quyết bài tập này một cách hiệu quả.
Giaitoan.edu.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán. Chúc các em học tập tốt!