Bài 5 trang 120 SGK Toán 11 tập 1 thuộc chương trình học Toán 11 Chân trời sáng tạo, tập trung vào việc vận dụng kiến thức về cấp số cộng và cấp số nhân để giải các bài toán thực tế. Bài tập này đòi hỏi học sinh phải nắm vững các công thức, tính chất của cấp số cộng và cấp số nhân, cũng như khả năng phân tích và giải quyết vấn đề.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho Bài 5 trang 120 SGK Toán 11 tập 1, giúp các em học sinh hiểu rõ bản chất của bài toán và tự tin làm bài tập.
Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác\(ABCDEF.A'B'C'D'E'F'\), Bình gắn hai thanh tre \({A_1}{D_1},{F_1}{C_1}\) song song với mặt phẳng đáy và cắt nhau tại \({O_1}\) (Hình 19).
Đề bài
Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác\(ABCDEF.A'B'C'D'E'F'\), Bình gắn hai thanh tre \({A_1}{D_1},{F_1}{C_1}\) song song với mặt phẳng đáy và cắt nhau tại \({O_1}\) (Hình 19).
a) Xác định giao tuyến của \(mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\) với các mặt bên của lăng trụ.
b) Cho biết \(A'{A_1} = 6A{A_1}\) và \(AA' = 70{\rm{ }}cm\). Tính \(C{C_1}\) và \({C_1}C'\).
Phương pháp giải - Xem chi tiết
‒ Để tìm giao tuyến của hai mặt phẳng, ta có 2 cách:
+ Cách 1: Tìm 2 điểm chung phân biệt. Giao tuyến là đường thẳng đi qua hai điểm chung.
+ Cách 2: Tìm 1 điểm chung và 2 đường thẳng song song nằm trên mỗi mặt phẳng. Giao tuyến là đường thẳng đi qua điểm chung và song song với hai đường thẳng đó.
‒ Sử dụng định lí Thalès.
Lời giải chi tiết
a) Gọi \({B_1},{E_1}\) lần lượt là giao điểm của \(mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\) với \(BB',EE'\).
Ta có:
\(\left. \begin{array}{l}{A_1}{D_1}\parallel \left( {ABC{\rm{DEF}}} \right)\\{F_1}{C_1}\parallel \left( {ABC{\rm{DEF}}} \right)\\{A_1}{D_1},{F_1}{C_1} \subset mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\end{array} \right\} \Rightarrow mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\parallel \left( {ABC{\rm{DEF}}} \right)\)
Vậy giao tuyến của \(mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\) với các mặt bên của lăng trụ là:
\(\begin{array}{l}mp\left( {{A_1}{D_1},{F_1}{C_1}} \right) \cap \left( {ABB'A'} \right) = {A_1}{B_1}\\mp\left( {{A_1}{D_1},{F_1}{C_1}} \right) \cap \left( {BCC'B'} \right) = {B_1}{C_1}\\mp\left( {{A_1}{D_1},{F_1}{C_1}} \right) \cap \left( {C{\rm{DD'C'}}} \right) = {C_1}{D_1}\\mp\left( {{A_1}{D_1},{F_1}{C_1}} \right) \cap \left( {DEE'D'} \right) = {D_1}{E_1}\\mp\left( {{A_1}{D_1},{F_1}{C_1}} \right) \cap \left( {EFF'E'} \right) = {E_1}{F_1}\\mp\left( {{A_1}{D_1},{F_1}{C_1}} \right) \cap \left( {AFF'A'} \right) = {A_1}{F_1}\end{array}\)
b) \(ABCDEF.A'B'C'D'E'F'\) là hình lăng trụ \( \Rightarrow CC' = AA' = 70\left( {cm} \right)\)
\(A'{A_1} = 6A{A_1} \Rightarrow A{A_1} = \frac{1}{7}AA' = 10\left( {cm} \right)\)
\(mp\left( {{A_1}{D_1},{F_1}{C_1}} \right)\parallel \left( {ABC{\rm{DEF}}} \right)\parallel \left( {A'B'C'{\rm{D'E'F'}}} \right)\)
\(\begin{array}{l} \Rightarrow \frac{{C{C_1}}}{{CC'}} = \frac{{A{A_1}}}{{AA'}} \Leftrightarrow C{C_1} = \frac{{CC'.A{A_1}}}{{AA'}} = \frac{{70.10}}{{70}} = 10\left( {cm} \right)\\ \Rightarrow {C_1}C' = CC' - C{C_1} = 70 - 10 = 60\left( {cm} \right)\end{array}\)
Bài 5 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng trong chương trình học Toán 11, giúp học sinh củng cố kiến thức về cấp số cộng và cấp số nhân. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Trước khi đi vào giải bài tập, chúng ta cần ôn lại một số kiến thức cơ bản về cấp số cộng và cấp số nhân:
(Giả sử đề bài Bài 5 là: Cho cấp số cộng (un) có u1 = 2 và d = 3. Tính u10 và S10)
Lời giải:
Vậy, u10 = 29 và S10 = 155.
Ngoài bài tập Bài 5 trang 120 SGK Toán 11 tập 1, còn rất nhiều bài tập tương tự liên quan đến cấp số cộng và cấp số nhân. Để giải các bài tập này, bạn cần:
Để củng cố kiến thức, bạn có thể tự giải các bài tập sau:
Bài 5 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về cấp số cộng và cấp số nhân. Bằng cách nắm vững lý thuyết và luyện tập thường xuyên, bạn sẽ tự tin giải quyết các bài tập tương tự và đạt kết quả tốt trong môn Toán.
Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh đã hiểu rõ cách giải Bài 5 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo. Chúc các bạn học tập tốt!