Bài 4 trang 56 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.
Cho tứ diện đều (ABCD) cạnh (a). Gọi (K) là trung điểm của (CD).
Đề bài
Cho tứ diện đều \(ABCD\) cạnh \(a\). Gọi \(K\) là trung điểm của \(CD\). Tính góc giữa hai đường thẳng \(AK\) và \(BC\).
Phương pháp giải - Xem chi tiết
Cách xác định góc giữa hai đường thẳng \(a\) và \(b\):
Bước 1: Lấy một điểm \(O\) bất kì.
Bước 2: Qua điểm \(O\) dựng đường thẳng \(a'\parallel a\) và đường thẳng \(b'\parallel b\).
Bước 3: Tính \(\left( {a,b} \right) = \left( {a',b'} \right)\).
Lời giải chi tiết
Gọi \(I\) là trung điểm của \(B{\rm{D}}\).
Ta có: \(I\) là trung điểm của \(B{\rm{D}}\)
\(K\) là trung điểm của \(CD\)
\( \Rightarrow IK\) là đường trung bình của tam giác \(BCD\)
\( \Rightarrow IK\parallel BC \Rightarrow \left( {AK,BC} \right) = \left( {AK,IK} \right) = \widehat {AKI}\)
\(IK = \frac{1}{2}BC = \frac{a}{2}\)
\(AI\) là trung tuyến của tam giác \(AB{\rm{D}}\)\( \Rightarrow AI = \frac{{\sqrt {2\left( {A{B^2} + A{{\rm{D}}^2}} \right) - B{{\rm{D}}^2}} }}{2} = \frac{{a\sqrt 3 }}{2}\)
\(AK\) là trung tuyến của tam giác \(AC{\rm{D}}\)\( \Rightarrow AK = \frac{{\sqrt {2\left( {A{C^2} + A{{\rm{D}}^2}} \right) - C{{\rm{D}}^2}} }}{2} = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác \(AIK\) có:
\(\cos \widehat {AKI} = \frac{{A{K^2} + I{K^2} - A{I^2}}}{{2.AK.IK}} = \frac{{\sqrt 3 }}{6} \Rightarrow \widehat {AKI} \approx {73^ \circ }13'\)
Vậy \(\left( {AK,BC} \right) \approx {73^ \circ }13'\).
Bài 4 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của nó. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:
Bài 4 yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:
Tính đạo hàm f'(x).
Tìm các điểm cực trị của hàm số.
Xác định khoảng đồng biến và nghịch biến của hàm số.
Để tính đạo hàm f'(x), ta sử dụng quy tắc đạo hàm của hàm số đa thức:
f'(x) = 3x2 - 6x
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của đạo hàm bậc hai f''(x):
f''(x) = 6x - 6
Tại x = 0, f''(0) = -6 < 0, vậy x = 0 là điểm cực đại.
Tại x = 2, f''(2) = 6 > 0, vậy x = 2 là điểm cực tiểu.
Giá trị của hàm số tại các điểm cực trị là:
f(0) = 2
f(2) = 8 - 12 + 2 = -2
Vậy, hàm số có điểm cực đại là (0; 2) và điểm cực tiểu là (2; -2).
Ta xét dấu của đạo hàm f'(x):
f'(x) > 0 khi x < 0 hoặc x > 2, vậy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
f'(x) < 0 khi 0 < x < 2, vậy hàm số nghịch biến trên khoảng (0; 2).
Thông qua việc giải bài 4 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo, học sinh đã nắm vững kiến thức về đạo hàm, điểm cực trị và khoảng đồng biến, nghịch biến của hàm số. Đây là những kiến thức cơ bản và quan trọng trong chương trình học Toán 11.
Ngoài ra, học sinh có thể tham khảo thêm các bài tập tương tự và các tài liệu học tập khác để nâng cao kiến thức và kỹ năng giải toán.
Đạo hàm của hàm số
Điểm cực trị của hàm số
Khoảng đồng biến và nghịch biến của hàm số
Ứng dụng của đạo hàm trong việc khảo sát hàm số
Để củng cố kiến thức, học sinh có thể giải thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. Việc luyện tập thường xuyên sẽ giúp học sinh nắm vững kiến thức và kỹ năng giải toán một cách hiệu quả.
Hy vọng lời giải chi tiết và hướng dẫn giải bài 4 trang 56 SGK Toán 11 tập 2 – Chân trời sáng tạo này sẽ giúp các em học sinh học tập tốt hơn. Chúc các em thành công!