Logo Header
  1. Môn Toán
  2. Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo

Bài 1 trang 73 SGK Toán 11 tập 2 thuộc chương trình học Toán 11 Chân trời sáng tạo. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.

Tại giaitoan.edu.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Cho hình chóp (S.ABC) có đáy là tam giác vuông tại (C), mặt bên (SAC) là tam giác đều và nằm trong mặt phẳng vuông góc với (left( {ABC} right)).

Đề bài

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(C\), mặt bên \(SAC\) là tam giác đều và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\).

a) Chứng minh rằng \(\left( {SBC} \right) \bot \left( {SAC} \right)\).

b) Gọi \(I\) là trung điểm của \(SC\). Chứng minh rằng \(\left( {ABI} \right) \bot \left( {SBC} \right)\).

Phương pháp giải - Xem chi tiếtBài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo 1

Cách chứng minh hai mặt phẳng vuông góc: chứng minh mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng.

Lời giải chi tiết

Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo 2

a) Gọi \(H\) là trung điểm của \(AC\)

\(SAC\) là tam giác đều \( \Rightarrow SH \bot AC\)

Mà \(\left( {SAC} \right) \bot \left( {ABC} \right)\)

\( \Rightarrow SH \bot \left( {ABC} \right) \Rightarrow SH \bot BC\)

Lại có \(AC \bot BC\)

\(\left. \begin{array}{l} \Rightarrow BC \bot \left( {SAC} \right)\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SAC} \right)\)

b) \(SAC\) là tam giác đều \( \Rightarrow AI \bot SC\)

\(BC \bot \left( {SAC} \right) \Rightarrow BC \bot AI\)

\(\left. \begin{array}{l} \Rightarrow AI \bot \left( {SBC} \right)\\AI \subset \left( {ABI} \right)\end{array} \right\} \Rightarrow \left( {ABI} \right) \bot \left( {SBC} \right)\)

Chinh phục Toán 11, mở rộng cánh cửa Đại học trong tầm tay! Khám phá ngay Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo – hành trang không thể thiếu trong chuyên mục toán lớp 11 trên nền tảng học toán. Bộ bài tập toán trung học phổ thông được biên soạn chuyên sâu, bám sát chặt chẽ chương trình Toán lớp 11 và định hướng các kỳ thi quan trọng, cam kết tối ưu hóa toàn diện quá trình ôn luyện. Qua đó, học sinh không chỉ làm chủ kiến thức phức tạp mà còn rèn luyện tư duy giải quyết vấn đề, sẵn sàng cho các kỳ thi và chương trình đại học, nhờ phương pháp tiếp cận trực quan, logic và hiệu quả học tập vượt trội!

Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo: Giải chi tiết và hướng dẫn

Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng trong chương trình học, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Dưới đây là lời giải chi tiết và hướng dẫn giải bài tập này:

Nội dung bài tập

Bài tập yêu cầu tính đạo hàm của các hàm số sau:

  • a) y = x3 - 3x2 + 2x - 5
  • b) y = (x2 + 1)(x - 2)
  • c) y = (x2 + 3x + 1) / (x + 1)
  • d) y = sin(2x) + cos(x)

Lời giải chi tiết

a) y = x3 - 3x2 + 2x - 5

Áp dụng công thức đạo hàm của tổng và hiệu, ta có:

y' = (x3)' - (3x2)' + (2x)' - (5)'

y' = 3x2 - 6x + 2

b) y = (x2 + 1)(x - 2)

Áp dụng công thức đạo hàm của tích, ta có:

y' = (x2 + 1)'(x - 2) + (x2 + 1)(x - 2)'

y' = 2x(x - 2) + (x2 + 1)(1)

y' = 2x2 - 4x + x2 + 1

y' = 3x2 - 4x + 1

c) y = (x2 + 3x + 1) / (x + 1)

Áp dụng công thức đạo hàm của thương, ta có:

y' = [(x2 + 3x + 1)'(x + 1) - (x2 + 3x + 1)(x + 1)'] / (x + 1)2

y' = [(2x + 3)(x + 1) - (x2 + 3x + 1)(1)] / (x + 1)2

y' = (2x2 + 5x + 3 - x2 - 3x - 1) / (x + 1)2

y' = (x2 + 2x + 2) / (x + 1)2

d) y = sin(2x) + cos(x)

Áp dụng công thức đạo hàm của hàm lượng giác, ta có:

y' = (sin(2x))' + (cos(x))'

y' = cos(2x) * 2 - sin(x)

y' = 2cos(2x) - sin(x)

Lưu ý khi giải bài tập

Khi giải bài tập về đạo hàm, cần nắm vững các công thức đạo hàm cơ bản và các quy tắc đạo hàm như đạo hàm của tổng, hiệu, tích, thương, hàm hợp. Ngoài ra, cần chú ý đến việc biến đổi biểu thức để đưa về dạng đơn giản nhất trước khi tính đạo hàm.

Ứng dụng của đạo hàm

Đạo hàm có rất nhiều ứng dụng trong toán học và các lĩnh vực khác. Trong toán học, đạo hàm được sử dụng để tìm cực trị của hàm số, khảo sát hàm số, tính diện tích và thể tích. Trong các lĩnh vực khác, đạo hàm được sử dụng để mô tả tốc độ thay đổi của một đại lượng, tối ưu hóa các quá trình, và giải quyết các bài toán vật lý, kinh tế, và kỹ thuật.

Bài tập tương tự

Để củng cố kiến thức về đạo hàm, bạn có thể làm thêm các bài tập tương tự trong SGK Toán 11 tập 2 – Chân trời sáng tạo hoặc các bài tập trên các trang web học toán online khác.

Kết luận

Bài 1 trang 73 SGK Toán 11 tập 2 – Chân trời sáng tạo là một bài tập quan trọng giúp học sinh hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và hướng dẫn giải trên, các bạn học sinh có thể tự tin giải bài tập này và các bài tập tương tự.

Tài liệu, đề thi và đáp án Toán 11